2 resultados para DNA Error Correction

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

30.00% 30.00%

Publicador:

Resumo:

I. Gunter and Christmas (1973) described the events leading to the stranding of a baleen whale on Ship Island, Mississippi, in 1968, giving the species as Balaenopteru physalus, the Rorqual. Unfortunately the identification was in error, but fortunately good photographs were shown. The underside of the tail was a splotched white, but there was no black margin. The specimen also had fewer throat and belly grooves than the Rorqual, as a comparison with True’s (1904) photograph shows. Dr. James Mead (in litt.) pointed out that the animal was a Sei Whale, Balaenoptera borealis. This remains a new Mississippi record and according to Lowery’s (1974) count, it is the fifth specimen reported from the Gulf of Mexico. The stranding of a sixth Sei Whale on Anclote Keys in the Gulf, west of Tarpon Springs, Florida on 30 May 1974, was reported in the newspapers and by the Smithsonian Institution (1974). II. Gunter, Hubbs and Beal (1955) gave measurements on a Pygmy Sperm Whale, Kogia breviceps, which stranded on Mustang Island on the Texas coast and commented upon the recorded variations of proportional measurements in this species. Then according to Raun, Hoese and Moseley (1970) these questions were resolved by Handley (1966), who showed that a second species, Kogia simus, the Dwarf Sperm Whale, is also present in the western North Atlantic. Handley’s argument is based on skull comparisons and it seems to be rather indubitable. According to Raun et al. (op. cit.), the stranding of a species of Kogia on Galveston Island recorded by Caldwell, Ingles and Siebenaler (1960) was K. simus. They also say that Caldwell (in litt.) had previously come to the same conclusion. Caldwell et al. also recorded another specimen from Destin, Florida, which is now considered to have been a specimen of simus. The known status of these two little sperm whales in the Gulf is summarized by Lowery (op. cit.).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The enzymatically catalyzed template-directed extension of ssDNA/primer complex is an impor-tant reaction of extraordinary complexity. The DNA polymerase does not merely facilitate the insertion of dNMP, but it also performs rapid screening of substrates to ensure a high degree of fidelity. Several kinetic studies have determined rate constants and equilibrium constants for the elementary steps that make up the overall pathway. The information is used to develop a macro-scopic kinetic model, using an approach described by Ninio [Ninio J., 1987. Alternative to the steady-state method: derivation of reaction rates from first-passage times and pathway probabili-ties. Proc. Natl. Acad. Sci. U.S.A. 84, 663–667]. The principle idea of the Ninio approach is to track a single template/primer complex over time and to identify the expected behavior. The average time to insert a single nucleotide is a weighted sum of several terms, in-cluding the actual time to insert a nucleotide plus delays due to polymerase detachment from ei-ther the ternary (template-primer-polymerase) or quaternary (+nucleotide) complexes and time delays associated with the identification and ultimate rejection of an incorrect nucleotide from the binding site. The passage times of all events and their probability of occurrence are ex-pressed in terms of the rate constants of the elementary steps of the reaction pathway. The model accounts for variations in the average insertion time with different nucleotides as well as the in-fluence of G+C content of the sequence in the vicinity of the insertion site. Furthermore the model provides estimates of error frequencies. If nucleotide extension is recognized as a compe-tition between successful insertions and time delaying events, it can be described as a binomial process with a probability distribution. The distribution gives the probability to extend a primer/template complex with a certain number of base pairs and in general it maps annealed complexes into extension products.