3 resultados para DIG-labeling

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Public Law 107-171 of the U.S. Farm Security and Rural Investment Act of 2002 required country-of-origin labeling (COOL) for beef, lamb, pork, fish, perishable agricultural commodities (fresh and frozen fruits and vegetables) and peanuts. While a goal of this law was to benefit domestic consumers by allowing them to make informed consumption decisions, the effects of COOL on the interest groups involved have been the subject of a heated on-going debate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the past 50 years, the range of the nine-banded armadillo (Dasypus novemcinctus) in the south has been rapidly expanding. As their range expands, armadillos increasingly come into conflict with suburban landowners. When foraging, armadillos often uproot ornamental plants. Their rooting also destroys gardens, lawns, and flower beds. Their burrowing can damage tree roots and building foundations. Most armadillo damage is a result of their feeding habits. Armadillos dig shallow holes, 1- 3 inches deep and 3-5 inches long, as they search for soil invertebrates. A recent survey of Georgia county extension agents by scientists at the University of Georgia found that 77.6% of all agents reported receiving complaints or requests for information on armadillos. Armadillo related inquiries made up 10.1 % all inquiries for all agents across the state, surpassing even the white-tail deer (Odocoileus virginianus). Armadillos are often assumed to destroy nests of ground-nesting birds. Armadillo diets have been studied in several states including Alabama, Louisiana, Texas, Georgia, Arkansas, and Florida. According to these studies, vertebrate matter, especially bird eggs, made up an minor portion of their diet. The armadillo’s diet often consists of more than 90% insects, grubs and earthworms. Based on these studies, it seems that claims of armadillos being significant nest predators are unfounded.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The modification of proteins by reducing sugars is a process that occurs naturally in the body. This process, which is known as glycation, has been linked to many of the chronic complications encountered during diabetes. Glycation has also been linked to changes in the binding of human serum albumin (HSA) to several drugs and small solutes in the body. While these effects are known, there is little information that explains why these changes in binding occur. The goal of this project was to obtain qualitative and quantitative information about glycation that occurs on HSA. The first section of this dissertation examined methods that could be used to quantify and identify glycation that occurs on HSA. The extent of glycation that occurred on HSA was quantified using oxygen-18 labeling mass spectrometry and the glycation sites were identified by observing the mass-to-charge (m/z) shifts that occurred in glycated HSA. This initial investigation revealed that oxygen-18 labeling based quantitation can be improved over previous methods if a relative comparison is done with oxygen-18 labeled peptides in a control HSA sample. Similarly, the process of making m/z shift-based assignments could be improved if only the peptides that were unique to the glycated HSA samples were used with internal calibration. These techniques were used in subsequent chapters for the assignment of early and late-stage glycation products on HSA. The regions of HSA that contained the highest amount of modification were identified, quantified, and ranked in order of their relative abundance. Of the commonly reported glycation sites, the N-terminus was found to have the highest extent of modification, followed by lysines 525, 199, and 439. The relative amount of modification on lysine 281, with respect to the aforementioned residues, varied with different degrees of glycation. The oxygen-18 labeling approach used for this analysis was novel because it allowed for the simultaneous quantification of all glycation-related modifications that were occurring on HSA. As such, several arginine residues were also found to have high amounts of modification on glycated HSA.