2 resultados para DDT - musiikkiyhtye

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In January 1973, large numbers of Mugil cephalus (striped mullet), weighing approximately 250 gm each, died in two freshwater localities in tidewater bayous of Jackson County, Mississippi. Fish identified as Mugil curema, M. cephalus, Megalops atlantica, Dormitator maculatus, and Fundulus grandis were found dead in other low saline estuarine areas. Fish-kills during cold periods are less commonly encountered in Mississippi than in Texas or Florida. This particular incident is attributed to conditions of stress for fishes incompletely acclimated to the encountered low temperatures. The most deleterious stress was the low saline water which probably allowed a breakdown in the fishes' ion-osmoregulatory mechanisms. Striped mullet and other euryhaline fishes in salinities greater than 6 ppt survived, as did freshwater centrarchids and ictalurids in areas with dying mullet. Other stresses thought to contribute to the weakening of striped mullet in Paige Bayou during the period of rapidly decreasing temperatures include starvation and high levels of pesticide residues. In examined fish, the alimentary tracts were devoid of food, the gall bladders were distended and leaking bile, the livers contained excess lipid material and were often stained throughout with bile pigments, and the levels of DDT metabolites and endrin residues in the liver were higher than in control fish. Stress caused by low levels of dissolved oxygen, toxic substances in the water, or disease was discounted as a cause of death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As you can see from the general tenor of the printed program for this seminar, I am in the unenviable position of trying to discourage you from certain types of chemical control; but my assigned topic "Side Effects of Persistent Toxicants," implies that mission. However, my remarks may be somewhat anticlimax at this time, because it is now generally conceded that we need to reevaluate certain chemicals in control work and to restrict or severely curtail use of those that per¬sist for long periods in the environment. So let me detail my reasons for a somewhat negative attitude toward the use of the persistent hydrocarbons from my experience with the effects of these materials on birds. But first a few words of caution about control work in general, which so often disrupts natural processes and leads to new and unforseen difficulties. As an example, I think of the irruption of mice in the Klamath valley in northern California and southern Oregon in the late '50's. Intensive predator control, particularly of coyotes, but also of hawks and owls, was followed by a severe outbreak of mice in the spring of 1958. To combat the plague of mice, poisoned bait (1080 and zinc phosphide) was widely distributed in an area used by 500,000 waterfowl each spring. More than 3,000 geese were poisoned, so driv¬ing parties were organized to keep the geese off the treated fields. Here it seems conceivable that the whole chain of costly events--cost of the original and probably unnecessary predator control, economic loss to crops from the mouse outbreak, another poisoning campaign to combat the mice, loss of valuable waterfowl resources, and man-hours involved in flushing geese from the fields--might have been averted by a policy of not interfering with the original predator-prey relationship. This points to a dilemma we always face. (We create deplorable situations by clumsy interference with natural processes, then seek artificial cures to correct our mistakes.) For example, we spend millions of dollars in seeking cures for cancer, but do little or nothing about restricting the use of known or suspected carcinogens such as nicotine and DDT.