2 resultados para Cyber-Dating
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
The emerging Cyber-Physical Systems (CPSs) are envisioned to integrate computation, communication and control with the physical world. Therefore, CPS requires close interactions between the cyber and physical worlds both in time and space. These interactions are usually governed by events, which occur in the physical world and should autonomously be reflected in the cyber-world, and actions, which are taken by the CPS as a result of detection of events and certain decision mechanisms. Both event detection and action decision operations should be performed accurately and timely to guarantee temporal and spatial correctness. This calls for a flexible architecture and task representation framework to analyze CP operations. In this paper, we explore the temporal and spatial properties of events, define a novel CPS architecture, and develop a layered spatiotemporal event model for CPS. The event is represented as a function of attribute-based, temporal, and spatial event conditions. Moreover, logical operators are used to combine different types of event conditions to capture composite events. To the best of our knowledge, this is the first event model that captures the heterogeneous characteristics of CPS for formal temporal and spatial analysis.
Resumo:
Rapidly accumulating Holocene sediments in estuaries commonly are difficult to sample and date. In Chesapeake Bay, we obtained sediment cores as much as 20min length and used numerous radiocarbon ages measured by accelerator mass spectrometry methods to provide the first detailed chronologies of Holocene sediment accumulation in the bay. Carbon in these sediments is a complex mixture of materials from a variety of sources. Analyses of different components of the sediments show that total organic carbon ages are largely unreliable, because much of the carbon (including coal) has been transported to the bay from upstream sources and is older than sediments in which it was deposited. Mollusk shells (clams, oysters) and foraminifera appear to give reliable results, although reworking and burrowing are potential problems. Analyses of museum specimens collected alive before atmospheric nuclear testing suggest that the standard reservoir correction for marine samples is appropriate for middle to lower Chesapeake Bay. The biogenic carbonate radiocarbon ages are compatible with 210Pb and 137Cs data and pollen stratigraphy from the same sites. Post-settlement changes in sediment transport and accumulation is an important environmental issue in many estuaries, including the Chesapeake. Our data show that large variations in sediment mass accumulation rates occur among sites. At shallow water sites, local factors seem to control changes in accumulation rates with time. Our two relatively deep-water sites in the axial channel of the bay have different long-term average accumulation rates, but the history of sediment accumulation at these sites appears to reflect overall conditions in the bay. Mass accumulation rates at the two deep-water sites rapidly increased by about fourfold coincident with widespread land clearance for agriculture in the Chesapeake watershed.