4 resultados para Cooling protocol
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
The desire of Nebraska people to continue the improvement of living conditions and to secure more healthful foods has been responsible for many changes in methods of caring for milk. One of the important factors in keeping milk sweet and of good quality is the process of cooling and keeping it cool until used. Three of these processes are as follows: placing containers of warm milk in any quantity of still water or still air at temperatures ranging from freezing to within a few degrees of the temperature of the milk, placing the containers in such positions that air or water are circulated around them, and causing the milk to flow in such manner that a thin film comes in contact with a surface which is cooled by air or liquids varying in temperature from 10 degrees Fahrenheit to a few degrees below that of the milk. After some of the heat has been removed the milk is stored under conditions very similar to those found in cooling processes. This 1932 research bulletin discusses why milk is cooled, why milk sours, how bacteria grows, and the many ways that milk can be cooled.
Resumo:
In this paper, we propose a Layered Clustering Hierarchy (LCH) communication protocol for Wireless Sensor Networks (WSNs). The design of LCH has two goals: scalability and energy-efficiency. In LCH, the sensor nodes are organized as a layered clustering structure. Each layer runs a distributed clustering protocol. By randomizing the rotation of cluster heads in each layer, the energy load is distributed evenly across sensors in the network. Our simulations show that LCH is effective in densely deployed sensor networks. On average, 70% of live sensor nodes are involved directly in the clustering communication hierarchy. Moreover, the simulations also show that the energy load and dead nodes are distributed evenly over the network. As studies prove that the performance of LCH depends mainly on the distributed clustering protocol, the location of cluster heads and cluster size are two critical factors in the design of LCH.
Resumo:
Most of the proposed key management protocols for wireless sensor networks (WSNs) in the literature assume that a single base station is used and that the base station is trustworthy. However, there are applications in which multiple base stations are used and the security of the base stations must be considered. This paper investigates a key management protocol in wireless sensor networks which include multiple base stations. We consider the situations in which both the base stations and the sensor nodes can be compromised. The proposed key management protocol, mKeying, includes two schemes, a key distribution scheme, mKeyDist, supporting multiple base stations in the network, and a key revocation scheme, mKeyRev, used to efficiently remove the compromised nodes from the network. Our analyses show that the proposed protocol is efficient and secure against the compromise of the base stations and the sensor nodes.
Resumo:
In the United States the peak electrical use occurs during the summer. In addition, the building sector consumes a major portion of the annual electrical energy consumption. One of the main energy consuming components in the building sector is the Heating, Ventilation, and Air-Conditioning (HVAC) systems. This research studies the feasibility of implementing a solar driven underground cooling system that could contribute to reducing building cooling loads. The developed system consists of an Earth-to-Air Heat Exchanger (EAHE) coupled with a solar chimney that provides a natural cool draft to the test facility building at the Solar Energy Research Test Facility in Omaha, Nebraska. Two sets of tests have been conducted: a natural passively driven airflow test and a forced fan assisted airflow test. The resulting data of the tests has been analyzed to study the thermal performance of the implemented system. Results show that: The underground soil proved to be a good heat sink at a depth of 9.5ft, where its temperature fluctuates yearly in the range of (46.5°F-58.2°F). Furthermore, the coupled system during the natural airflow modes can provide good thermal comfort conditions that comply with ASHRAE standard 55-2004. It provided 0.63 tons of cooling, which almost covered the building design cooling load (0.8 tons, extreme condition). On the other hand, although the coupled system during the forced airflow mode could not comply with ASHRAE standard 55-2004, it provided 1.27 tons of cooling which is even more than the building load requirements. Moreover, the underground soil experienced thermal saturation during the forced airflow mode due to the oversized fan, which extracted much more airflow than the EAHE ability for heat dissipation and the underground soil for heat absorption. In conclusion, the coupled system proved to be a feasible cooling system, which could be further improved with a few design recommendations.