17 resultados para Control problems

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The remarks that I have prepared deal with direct contacts selling pest and bird control programs. I am going to limit my remarks to what I feel are the more important aspects of selling Bird Control. I think it is safe to say that one of the most difficult aspects of selling for most sales personnel is prospecting, that is, finding accounts to call on. Our sales personnel have to more or less come up with their own leads. They have to find out who to contact once they get there. I have found that the best prospect most of us have for selling Bird Control accounts are our present pest control accounts. Generally speaking, we try to main¬tain contact with our applicators in the field, who are in these accounts every day, asking them if there are any of their accounts that are having bird control problems. Another method of finding potential accounts, is driving around looking. It is more difficult to drive around and look for rat and/or roach problems, but generally speaking if a building or some type of business has a bird problem, it is fairly easy to locate. Another thing we can do is call on specific accounts. There are generally cer¬tain accounts that just by the manufacturing process do attract birds, for example: food plants, mills, beet plants, grain elevators, food processors, and so on. Other type operations which lend themselves to bird problems are industrial plants because of the super-structure (physical plant) that they have. Sub-stations and power plants are very attractive to birds. Some other situations that should be checked for bird problems are lumber yards and contractors' storage buildings. After deciding on a contact we get into what I call my basic four. There are four basic things that I try to impress upon our personnel to keep in mind when they go in to make a contact. The first one is the interview or actually making the contact so that you get an opportunity to have the interview, either calling for an appointment or making a "cold" call. The second one is closing for the survey. The third one is making the survey and preparing a proposal. The fourth and last one is the proposal presentation and closing of the sale. An additional item which would make a basic five is after you make the sale don't forget to follow up on the sale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT: A survey of Extension Wildlife Specialists in the U.S. provided a basis for estimating the magnitude of urban wildlife damage and control in this country. Response to the 9-question mail questionnaire was good (76 percent) following the single mailing to all Extension Wildlife Specialists or people in similar positions listed in the national directory. The majority of questions were answered based upon the experiences and best estimates of these specialists for the interval October 1986-September 1987. Specialists had difficulty providing estimates of damage and costs of prevention and control; 57 percent were not able to provide any data on these topics. Several of the questions dealt with attitudes of people requesting urban wildlife information and/or assistance and wide ranges of responses were received to most of these questions. Most people (78 percent) appeared willing to implement prevention/control measures recommended by these specialists, more than half (61 percent) wanted the animal handled/removed by someone else, and only about 40 percent wanted the damage stopped regardless of cost. Also, slightly over half (55 percent) of clientele represented did not want the offending animal harmed in any way. These results were highly variable from state to state. Several differences were noted in overall responses regarding urban wildlife species. Requests for information were received most frequently for bats and snakes, but both of these groups of animals ranked very low in terms of actual damage reported. The most frequently mentioned groups of animals causing damage in urban areas were roosting birds (including pigeons, starlings, and sparrows), woodpeckers (especially flickers), tree squirrels, bats, and moles. In terms of actual dollar values of damage done, white-tailed deer and pocket gophers apparently caused the most estimated damage. Due to these differences, it is necessary to know which criteria are being used to make an assessment of the relative importance of animal damage control problems. Techniques for controlling urban wildlife damage, such as exclusion, live-trapping, repellents, and poisons, are compared and discussed in some detail in this paper. As urbanization occurs across the nation, concerns about urban wildlife damage will continue; in most cases, we can and will live among these creatures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The problem of rats in our Hawaiian sugar cane fields has been with us for a long time. Early records tell of heavy damage at various times on all the islands where sugar cane is grown. Many methods were tried to control these rats. Trapping was once used as a control measure, a bounty was used for a time, gangs of dogs were trained to catch the rats as the cane was harvested. Many kinds of baits and poisons were used. All of these methods were of some value as long as labor was cheap. Our present day problem started when the labor costs started up and the sugar industry shifted to long cropping. Until World War II cane was an annual crop. After the war it was shifted to a two year crop, three years in some places. Depending on variety, location, and soil we raise 90 to 130 tons of sugar cane per acre, which produces 7 to 15 tons of sugar per acre for a two year crop. This sugar brings about $135 dollars per ton. This tonnage of cane is a thick tangle of vegetation. The cane grows erect for almost a year, as it continues to grow it bends over at the base. This allows the stalk to rest on the ground or on other stalks of cane as it continues to grow. These stalks form a tangled mat of stalks and dead leaves that may be two feet thick at the time of harvest. At the same time the leafy growing portion of the stalk will be sticking up out of the mat of cane ten feet in the air. Some of these individual stalks may be 30 feet long and still growing at the time of harvest. All this makes it very hard to get through a cane field as it is one long, prolonged stumble over and through the cane. It is in this mat of cane that our three species of rats live. Two species are familiar to most people in the pest control field. Rattus norvegicus and Rattus rattus. In the latter species we include both the black rat and the alexandrine rats, their habits seem to be the same in Hawaii. Our third rat is the Polynesian rat, Rattus exlans, locally called the Hawaiian rat. This is a small rat, the average length head to tip of tail is nine inches and the average body weight is 65 grams. It has dark brownish fur like the alexandrine rats, and a grey belly. It is found in Indonesia, on most of the islands of Oceania and in New Zealand. All three rats live in our cane fields and the brushy and forested portions of our islands. The norway and alexandrine rats are found in and around the villages and farms, the Polynesian rat is only found in the fields and waste areas. The actual amount of damage done by rats is small, but destruction they cause is large. The rats gnaw through the rind of the cane stalk and eat the soft juicy and sweet tissues inside. They will hollow out one to several nodes per stalk attacked. The effect to the cane stalk is like ringing a tree. After this attack the stalk above the chewed portion usually dies, and sometimes the lower portion too. If the rat does not eat through the stalk the cane stalk could go on living and producing sugar at a reduced rate. Generally an injured stalk does not last long. Disease and souring organisms get in the injury and kill the stalk. And if this isn't enough, some insects are attracted to the injured stalk and will sometimes bore in and kill it. An injured stalk of cane doesn't have much of a chance. A rat may only gnaw out six inches of a 30 foot stalk and the whole stalk will die. If the rat only destroyed what he ate we could ignore them but they cause the death of too much cane. This dead, dying, and souring cane cause several direct and indirect tosses. First we lose the sugar that the cane would have produced. We harvest all of our cane mechanically so we haul the dead and souring cane to the mill where we have to grind it with our good cane and the bad cane reduces the purity of the sugar juices we squeeze from the cane. Rats reduce our income and run up our overhead.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We monitored behavior of cattle egrets (Bubulcus ibis) during a population control program to reduce egret-aircraft strike hazards from a small heronry near the Hilo, Hawaii, airport. Results verified that attempts to move egrets from undesirable roost sites should be undertaken before nesting begins. Although possibly compounded by previous treatments, our observations also indicate that 1) egrets may abandon a new roost in response to a few dead egrets placed in clear view around the roost, and 2) shooting at egrets as they attempt to land at a traditional feeding site causes long-term avoidance of the area. Rapid repopulation after control indicates that techniques to move roosts and prevent congregations are more likely than population control to resolve problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: Under Western Australian legislation, landholders have an obligation to control rabbits on their properties; local authorities the responsibility to supervise their work whilst the Agriculture Protection Board has a Statewide supervisory and co-ordination role. Prior to 1950 (when the Agriculture Protection Board was formed) the central role was in the hands of a Government department which, through lack of staff and money was unable to provide adequate supervision, and rabbits were in plague proportions. Since 1950, the Board has actively engaged in a vigorous policy aimed at tighter control and supervision. To enable this, the Board has entered into a voluntary scheme with local authorities whereby the role of local supervision of landholders is passed to staff employed by the Board, but jointly financed by the local authority and the Board. A contract poisoning service is also pro¬vided by the Agriculture Protection Board to any landholder who is unable or unwilling, to meet his obligations in this area. Both services are subsidised. Two of the major reasons for the poor level of control existing before 1950, have thereby been minimised. Soon after its formation, the Board set up a research section which has devoted nearly all of its activities to applied research on control of the State's many vertebrate pest problems. In the rabbit control area, poisoning has received most attention. The "One-Shot" method of poisoning was developed after years of research. Fumigation is at present being closely studied as is the economics of complete eradication from some areas of the State. Greatest needs in the applied rabbit research field at present are: (1) a selective poison, or poisoning regime, which will not harm stock, and (2) a more complete understanding of the economics of control and eradication. The serious rabbit problem which existed in 1950 has been reduced to very small proportions, by organisational development using local research findings. These organisational developments have been implemented by circumvention rather than confrontation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Each winter an estimated 350 million starlings, red-winged blackbirds (Agelaius phoeniceus), common grackles (Quiscalus quiscula), and brown-headed cowbirds (Molothrus ater) congregate in roosts in the southeastern United States (Meanley 1971, Meanley and Royall 1976). These birds have been of increasing concern because of agricultural damage claims (Stickley et al. 1976, Dolbeer et al. 1978), reputed health hazards (Monroe and Cronholm 1977), and other nuisance problems associated with them. Historical population trends (Dolbeer and Stehn 1979) and the source of winter-roosting blackbirds (Meanley 1971, Meanley and Dolbeer 1978, and Dolbeer 1978) have been summarized, but little information on the number of consecutive nights a bird returns to the same roost (roost fidelity) or the dynamics of a winter roost is available. The purpose of this paper is to present information on roost fidelity and population dynamics needed to better understand and manage winter blackbird and starling roosts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Red-billed Quelea (Quelga quelaa), because of its widespread destruction of grain crops throughout its range in Africa, is one of the most studied and written about granivorous bird species. Less publicized are more local bird pests in Africa which may be equally Important. The Village Weaver, (Ploceus cucullatus), for example, is a pest in many countries, while some other Ploecids with limited destructive habits create local problems. Significant crop losses also occur where there are large populations of Golden Sparrows (Passer luteus), House Sparrows (Passer domesticus), Red Bishops (Euplectes oryx), Doves (Streptopelia spp.), Glossy Starlings (Lamprotornis chalybaeus), Parakeets (Psittacula spp.), and some waterfowl (Mackworth-Praed and Grant, 1952; Pans Manual No. 3, 1974; Park, 1974). Crop losses from local bird pests were reported in early February 1975 to the Sudan Plant Protection Bird Control Unit of the Ministry of Agriculture. A mechanized farm scheme in Khartoum North had large concentrations of Red Bishops roosting in maize and feeding on an early-maturing wheat variety (Mexicana). Small flocks of Golden Sparrows and House Sparrows also were present. Bird damage was clearly visible, especially at the corners and along the edges of the ripening wheatfields. Ground spraying with Queletox (60% a.1. Fenthion) on roosts of the Golden and House Sparrows was conducted along hedge rows of acacia (Acacia mellifera) located at the north end of the farm. Although the spray killed large numbers of roosting birds, damage con- tinued as the wheat matured. Pilot field trials were thus organized to test the effectiveness of other crop protection techniques. Because birds fed throughout many blocks of wheat which matured at different periods, it was felt that several different experiments could be conducted without Interfering with each other. The control techniques Included an acoustical repellent, a chemical repellent, a chemical frightening agent, and a trap. The experiments, conducted from February 7 through February 23, 1975, were not designed as an integrated control operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To many people, California is synonomous with Disneyland, freeways, Los Angeles smog, Yosemite, the California missions, or for you bird aficionados, the California Condor. But do you think about California when you eat strawberry shortcake? You should -- California leads the nation in strawberry production. How about artichokes? California produces over 98% of the artichokes raised in the United States. Dates? California produces over 99% of the dates in the United States. Yes, California is all of these, and it is much more. California may well be the most diverse state in the United States. Within its 100.2 million acres, California has the lowest place in the U.S. in Death Valley and one of the highest mountains with Mt. Whitney. Because California is such a diverse state and has a wide variety of micro- climates, it supports a uniquely diverse agriculture. Agriculture uses only about 36 million acres of its total 100.2 million acres, and most of the cash return from crops is produced on 8,6 million acres that are irrigated. California produces about 250 crops and livestock commodities (excluding nursery crops) and provides the U.S. with about 25% of its table foods. California leads the nation in the production of 46 commercial crops and livestock commodities; its farmers and ranchers marketed $8.6 billion of crop and livestock products in 1975, and the state’s harvested farm production in 1975 set a new record at 51.1 million tons. HISTORY OF BIRD PROBLEMS Records such as this are not achieved without some risk. Crops growing in Cali- fornia have always had competition from many types of vertebrate pests. The wide variety of crops grown in California and the varied climates and situations in which they are grown has resulted in many different species of birds damaging crops. Birds have compet- ed with man for his crops since the dawn of agriculture. McAtee (1932) cited examples of bird damage that occurred in a wide variety of crops in California during the early 1900s. During the 1920s, many requests for Information and relief from damage caused by a wide variety of birds, culminated in the assignment, in May 1929, of two biologists, S. E. Piper and Johnson Neff, of the former U.S. Bio- logical Survey, to initiate field studies in California. In cooperation with the Cali- fornia Department of Food and Agriculture and County Agricultural Commissioners, the study was to determine the problems and devise control procedures relative to bird depredations. Piper and Neff found such damage as Horned Larks pulling sprouting crops, House Finches disbudding deciduous fruit trees and devouring mature fruit. Blackbirds were a problem in the rice crop. Early controls were varied and, for the most part, lacked effectiveness. Flagging of fields was common to deter Horned Larks. Windmill devices were tried to frighten birds. Shooting to kill birds was common; scarecrows were.used. The six-year study brought forth the basis of most of the depredating bird control techniques still in use in California. At the end of the study, these two biologists compiled a book called “Procedure and Methods in Controlling Birds Injurious to Crops in California.” This was and still is the “Bible” for bird damage control techniques used in California. The thorough investigations conducted by these biologists resulted in techniques that have remained valid in California for over 40 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urban populations of Canada geese (Branta canadensis) cause considerable problems when large numbers congregate in parks, playing fields, and backyards. In most cases, geese are drawn to these sites to feed on the lawns. I tested whether geese have feeding preferences for different grass species. Captive Canada geese preferred Kentucky bluegrass (Poa pratensis) and disliked tall fescue (Festuca arundinaceae) over colonial bentgrass (Agrostis tenuis cv. Highland), perennial ryegrass (Lolium perenne), and red fescue (Festuca rubra). They refused to eat some other ground covers such as pachysandra (Pachysandra terminalis) and English ivy (Hedera helix). These results suggest that goose numbers at problem sites could be reduced by changing the ground cover. I also compared the characteristics of foraging sites used by geese to other foraging sites that geese avoided. Occupied sites were more open so that geese had clearer visibility and greater ease in taking off and landing. This suggests that goose numbers at problem sites also could be reduced by planting tall trees to make it harder for the geese to fly away, and planting bushes and hedges to obstruct a goose's visibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a nation we have gained world recognition for our ability to utilize our resources. In forestry our greatest accomplishments have been in the mechanization of harvest methods and in improvements in forest products. The renewal of this resource has been our greatest neglect. Though the end of the 19th Century marked the beginning of the conservation movement, it was not until a half century later that the force of economics through the demands of a growing population made forest re-establishment more than just a desire. Conservation in itself is a Utopian concept which requires other motivating forces to make it a reality. In the post-war years, and as late as the early 195O's, stocked land in the Pacific Northwest could be purchased for less than the cost of planting; the economic incentive was lacking. Only with sustained yield management and increased land values was there a balance in favor of true values. With greater effort placed on forest regeneration there was an increased need for methods of reducing losses to wildlife. The history of forest wildlife damage research, therefore, parallels that of forest land management; after rather austere beginnings, development became predominantly a response to economics. It was not until 1950 that the full time of one scientist was assigned to this important activity. The development of control methods for forest animal damage is a relatively new area of research. All animal life is dependent upon plants for its existence; forest wildlife is no exception. The removal of seed and foliage of undesirable plants often benefits the land managers; only when the losses or injuries are in conflict with man's interest is there damage involved. Unfortunately, the feeding activities of wildlife and the interests of the land managers are often in conflict. Few realize the breadth, scope, and subtilities associated with forest wildlife damage problems. There are not only numerous species of animals involved, but also a myriad of conditions, each combination possessing unique facets. It is a foregone conclusion that an understanding of the conditions is essential to facilitate a solution to any given problem. Though there are numerous methods of reducing animal damage, all of which have application under some situations, in this discussion emphasis will be placed on the role of chemicals and on western problems. Because of the broadness and complexity of the problem, generalizing is necessary and only brief coverage will be possible. However, an attempt will be made to discuss the use and limitations of various control methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this paper is to present a brief review of the research being conducted in England, France, Germany, and The Netherlands on problems caused by nuisance and depredating birds. Much of the information presented has been obtained through correspondence with collaborators. In the fall of 1962, I discussed depredating bird and bird-airport problems with research workers in these countries, and also attended the meeting of the International Union of Applied Ornithology held in Frankfurt/Main. In November 1963, I attended an international symposium about the bird-airport problem, held in Nice, France. This paper will draw attention to the current research which I think will interest American investigators, but will not report every aspect of the foreign investigations. Details appear in the publications that are listed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the first paper presented to you today by Dr. Spencer, an expert in the Animal Biology field and an official authority at the same time, you heard about the requirements imposed on a chemical in order to pass the different official hurdles before it ever will be accepted as a proven tool in wildlife management. Many characteristics have to be known and highly sophisticated tests have to be run. In many instances the governmental agency maintains its own screening, testing or analytical programs according to standard procedures. It would be impossible, however, for economic and time reasons to work out all the data necessary for themselves. They, therefore, depend largely on the information furnished by the individual industry which naturally has to be established as conscientiously as possible. This, among other things, Dr. Spencer has made very clear; and this is also what makes quite a few headaches for the individual industry, but I am certainly not speaking only for myself in saying that Industry fully realizes this important role in developing materials for vertebrate control and the responsibilities lying in this. This type of work - better to say cooperative work with the official institutions - is, however, only one part and for the most of it, the smallest part of work which Industry pays to the development of compounds for pest control. It actually refers only to those very few compounds which are known to be effective. But how to get to know about their properties in the first place? How does Industry make the selection from the many thousands of compounds synthesized each year? This, by far, creates the biggest problems, at least from the scientific and technical standpoint. Let us rest here for a short while and think about the possible ways of screening and selecting effective compounds. Basically there are two different ways. One is the empirical way of screening as big a number of compounds as possible under the supposition that with the number of incidences the chances for a "hit" increase, too. You can also call this type of approach the statistical or the analytical one, the mass screening of new, mostly unknown candidate materials. This type of testing can only be performed by a producer of many new materials,that means by big industries. It requires a tremendous investment in personnel, time and equipment and is based on highly simplified but indicative test methods, the results of which would have to be reliable and representative for practical purposes. The other extreme is the intellectual way of theorizing effective chemical configurations. Defenders of this method claim to now or later be able to predict biological effectiveness on the basis of the chemical structure or certain groups in it. Certain pre-experience should be necessary, that means knowledge of the importance of certain molecular requirements, then the detection of new and effective complete molecules is a matter of coordination to be performed by smart people or computers. You can also call this method the synthetical or coordinative method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our chairman has wisely asked that we not spend all of our time here telling each other about our bird problems. In the Southeast, our difficulties with blackbirds are based upon the same bird habits that cause trouble elsewhere: they flock, they roost and they eat, generally taking advantage of the readily available handouts that today's agricul¬tural practices provide. Those of us on the receiving end of these de¬predations of course think that damage in our own particular area must be far the worst, anywhere. Because of the location of our meeting place today, perhaps it is worthwhile to point out that a report prepared by our Bureau's Washington office this year outlined the problem of blackbird damage to corn in the Middle Atlantic States, the Great Lakes Region and in Florida, and then followed with this statement--"An equally serious problem occurs in rice and grain sorghum fields of Arkansas, Mississippi, Texas and Louisiana." The report also men¬tions that the largest winter concentrations of blackbirds are found in the lower Mississippi Valley. Our 1963-64 blackbird-starling survey showed 43 principal roosts totaling approximately 100 million of these birds in Virginia, the Carolinas, Georgia, Alabama, Tennessee and Kentucky. We have our own birds during the summer plus the "tourist" birds from up here and elsewhere during the winter, and all of these birds must eat, so suffice it to say that we, too, have some bird problems in the Southeast. I'm sure you're more interested in what we're doing about them. To keep this in perspective also, please bear in mind that against the magnitude of these problems, our blackbird control research staff at Gainesville consists of 3 biologists, 1 biochemist and one technician. And unfortunately, none of us happens to be a miracle worker. I think, though, we have made great progress toward solving the bird problems in the Southeast for the man-hours that have been expended in this re¬search. My only suggestion to those who are impatient about not having more answers is that they examine the budget that has been set up for this work. Only then could we intelligently discuss what might be expected as a reasonable rate of research progress. When I think about what we have accomplished in a short span of time, with very small expenditure, I can assure you that I am very proud of our small research crew at Gainesville--and I say this quite sincerely. At the Gainesville station, we work under two general research approaches to the bird damage problem. These projects have been assigned to us. The first is research on management of birds, particularly blackbirds and starlings destructive to crops or in feedlots, and, secondly, the development and the adaptation of those chemical compounds found to be toxic to birds but relatively safe to mammals. These approaches both require laboratory and field work that is further subdivided into several specific research projects. Without describing the details of these now, I want to mention some of our recent results. From the results, I'm sure you will gather the general objectives and some of the procedures used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The object is to hash over a few problems as we see them on this red-winged blackbird situation. I'm Mel Dyer, University of Guelph, Guelph, Ontario. Around the table are Tom Stockdale, Extension Wildlife Specialist, Ohio Cooperative Extension Service, Columbus; Maurice Giltz, Ohio Agriculture Research and Development Center, Wooster, Ohio; Joe Halusky, U.S. Fish and Wildlife Service, Columbus, Ohio; Daniel Stiles, U.S. Fish and Wildlife Service, Washington, D.C.; Paul Rodeheffer, U.S. Fish and Wildlife Service, Columbus, Ohio; Brian Hall, Blackbird Research Project, University of Guelph, Guelph, Ontario; George Cornwell, Virginia Polytechnic Insti¬tute, Blacksburg, Va.; Dick Warren, Peavey Grain Company, Minneapolis, Minn.; Bob Fringer, N.J. Department of Agriculture, Trenton, N.J.; Charles Stone, U.S. Fish and Wildlife Service, Columbus, Ohio; Larry Holcomb, Ohio Agricultural Research and Development Center, Wooster, Ohio; Doug Slack, Ohio Agricultural Research and Development Center, Wooster, Ohio; Charles Wagg, N.J. Department of Agriculture, Trenton, N.J.; Dick Smith, U.S. Fish and Wildlife Service, Columbus, Ohio; and Jim Caslick, U.S. Fish and Wildlife Service, Gainesville, Fla. As I see the situation, as a director of a red-winged blackbird research project, we have a problem which has been defined in human terms concerning a natural animal population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a pest control industry, we are interested in bird control, especially in areas of residence, commercial buildings, food plants, mills and elevators, commercial feed lots, farms, and even area wide controls in some of our cities. We run into all kinds of problems; I suppose you men do, too.