6 resultados para Control Strategies
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Surveillance and control activities related to bovine tuberculosis (TB) in free-ranging, Michigan white-tailed deer (Odocoileus virginianus) have been underway for over a decade, with significant progress. However, foci of higher TB prevalence on private lands and limited agency ability to eliminate them using broad control strategies have led to development and trial of new control strategies, such as live trapping, testing, and culling or release. Such strategies require a prompt, accurate live animal test, which has thus far been lacking. We report here the ability of seven candidate blood assays to determine the TB infection status of Michigan deer. Our aims were twofold: to characterize the accuracy of the tests using field-collected samples and to evaluate the feasibility of the tests for use in a test-and-cull strategy. Samples were collected from 760 deer obtained via five different surveys conducted between 2004 and 2007. Blood samples were subjected to one or more of the candidate blood assays and evaluated against the results of mycobacterial culture of the cranial lymph nodes. Sensitivities of the tests ranged from 46% to 68%, whereas specificities and negative predictive values were all .92%. Positive predictive values were highly variable. An exploratory analysis of associations among several host and sampling-related factors and the agreement between blood assay and culture results suggested these assays were minimally affected. This study demonstrated the capabilities and limitations of several available blood tests for Mycobacterium bovis on specimens obtained through a variety of field surveillance methods. Although these blood assays cannot replace mass culling, information on their performance may prove useful as wildlife disease managers develop innovative methods of detecting infected animals where mass culling is publicly unacceptable and cannot be used as a control strategy.
Resumo:
Bovine tuberculosis (TB) is a serious disease with animal health, public health, and international trade consequences. The cooperative Federal-State-industry effort to eradicate bovine TB from cattle in the United States has made significant progress since the program’s inception in 1917. However, the goal of eradication remains elusive. This proposed action plan presents Veterinary Services’ (VS’) current thinking about changes we are considering for the TB program to address our current challenges. This action plan will: 1. Reduce the introduction of TB into the U.S. national herd from imported animals and wildlife by: o Applying additional requirements to cattle imports from Mexico o Enhancing efforts to mitigate risks from wildlife 2. Enhance TB surveillance by: o Crafting a comprehensive national surveillance plan o Accelerating diagnostic test development to support surveillance 3. Increase options for managing TB-affected herds by: o Conducting epidemiological investigations and assessing individual herd risk o Applying whole-herd depopulation judiciously and developing alternative control strategies o Applying animal identification (ID) standards to meet animal ID needs 4. Modernize the regulatory framework to allow VS to focus resources where the disease exists 5. Transition the TB program from a State classification system to a science-based zoning approach to address disease risk To succeed, this new approach will require VS’ continued partnership with State animal health and wildlife officials, other Federal agencies, industry, international partners, academia, and other stakeholders. Successful partnerships will allow us to use available resources efficiently to achieve program objectives and protect our nation’s herd. Implementation of the VS proposed action plan will benefit Federal and State animal health officials, the regulated industries, and producers by allowing a more rapid response that employs up-to-date science and can adapt rapidly to changing situations.
Resumo:
The Pest Management Strategy for Bovine Tuberculosis (Tb) in New Zealand aims to achieve efficient freedom from Tb by 2013 and to eradicate the disease from livestock and wildlife. The West Taupo area, in the central North Island of New Zealand, was chronically infected with Tb in both domestic livestock herds (cattle and deer) and within wildlife populations (brushtail possum, ferret, feral deer and pigs). Through the development and implementation of a technically innovative management plan, this area is now approaching Tb free status. The case study / management plan reported here discusses the operational techniques and strategies that were implemented to achieve Tb clearance in the livestock herds and the possibilities of eradication from wildlife species. It particularly identifies the variations in control strategies that are required as population densities reduce and the challenges of maintaining strong effective control at low densities of some wildlife species, whilst not needing to control other species that were initially clinically diagnosed with Tb control. Use of diagnostic tools and education as an area moves through the cycle towards Tb freedom are as essential as the physical control activities. The use of intensive monitoring of both livestock and wildlife species as trend and performance indicators and the need to educate farmers, hunters and other land use groups become increasingly important.
Resumo:
The purpose of the current study is to identify the impact of teaching students to revise their stories on writing production (Total Words Written; TWW), writing accuracy (Percent Correct Writing Sequences; %CWS), number of critical story elements included in stories, and quality of writing. Three third-grade and one fourth-grade student who were experiencing difficulties in the area of writing were involved in the study. The students were first taught to plan their stories using the evidence-based program, Self-Regulated Strategy Development (SRSD), which has frequently been implemented to teach students to plan their stories. Students were then taught to revise their stories using SRSD procedures modified for instruction in revision strategies. Student progress was evaluated through a multiple-probe design across tasks and a multiple-probe design across participants, which allowed for experimental control over time and across story probes. In addition to the previously mentioned variables, student’s acceptability of the intervention and their attitudes toward writing were also assessed. Results indicated that instruction in revising increased student writing accuracy beyond the effects of instruction in planning. Additionally, although instruction in planning was shown to increase writing production, number of critical story elements, and quality of writing, instruction in revising produced additional improvement in these variables as well. Finally, results indicated that students liked the intervention and their attitudes toward writing generally increased. Implications for practice and future research directions will be discussed. Advisor: Merilee McCurdy
Resumo:
Seidel and Booth (1960) wrote that the "life histories of the genus Microtus are not numerous in the literature." In support of his observation he cited 6 publications, all dated between 1891 and 1953. Since then the literature has exploded with a proliferation of publications. An international literature review recently revealed over 3,500 citations for the genus. When Pitymys and Clethrionomys are included another 350 and 1,880, respectively, were found. Over the last 10 years approximately 3 new publications on voles appeared every 4 days; a significant output for what some would consider such an insignificant species. Most of the publications were the result of graduate research projects on population dynamics and species ecology. As such, many do not explore more than the rudimentary ecological relationships between the animal and their environments. Unfortunate, as well, is that all but one confined their observations to only a small part of their total environment. For many of these animals, their life underground may be more important for their survival than that above ground. Trapping studies conducted by Godfrey and Askham (1988) with permanently placed pitfall live traps in orchards revealed a significant inverse population fluctuation during the year. During the winter, when populations are expected to decrease, as many as 6 to 8 mature Microtus montanus were collected at any 1 time in the traps after several centimeters of snow accumulation. During the summer, when populations are expected to increase, virtually no animals were collected in the traps. According to current population dynamics theory, greater numbers of animals, including increasingly larger numbers of immature members of the community, should appear in any sample between the onset of the breeding period, generally in the spring, taper off during the latter part of the production season, usually late summer, and then decline as the limiting factors begin to take effect. For us, we trapped more animals in the fall and early winter than we did during the spring and summer. A review of the above literature did little to answer our question. Where are the animals going during the summer and why?
Resumo:
Expensive, extensive and apparently lethal control measures have been applied against many species of pest vertebrates and invertebrates for decades. In spite of this, few pests have been annihilated, and in many cases the stated goals have become progressively more modest, so that now we speak of saving foliage or a crop, rather than extermination. It is of interest to examine the reasons why animals are so difficult to exterminate, because this matter, of course, has implications for the type of control policy we pursue in the future. Also, it has implications for the problem of evaluating comparatively various resource management strategies. There are many biological mechanisms which could, in principle, enhance the performance of an animal population after control measures have been applied against it. These are of four main types: genetic, physiological, populationa1, and environmental. We are all familiar with the fact that in applying a control measure, we are, from the pest's point of view, applying intense selection pressure in favor of those individuals that may be preadapted to withstand the type of control being used. The well-known book by Brown (1958) documents, for invertebrates, a tremendous number of such cases. Presumably, vertebrates can show the same responses. Not quite so familiar is the evidence that sub-lethal doses of a lethal chemical may have a physiologically stimulating effect on population performance of the few individuals that happen to survive (Kuenen, 1958). With further research, we may find that this phenomenon occurs throughout the animal kingdom. Still less widely recognized is the fact that pest control elicits a populational homeostatic mechanism, as well as genetic and physiological homeostatic mechanisms. Many ecologists, such as Odum and Allee (1950, Slobodkin (1955), Klomp (1962) and the present author (1961, 1963) have pointed out that the curve for generation survival, or the curve for trend index as a function of last generations density is of great importance in population dynamics.