6 resultados para Control Methods

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of rats in our Hawaiian sugar cane fields has been with us for a long time. Early records tell of heavy damage at various times on all the islands where sugar cane is grown. Many methods were tried to control these rats. Trapping was once used as a control measure, a bounty was used for a time, gangs of dogs were trained to catch the rats as the cane was harvested. Many kinds of baits and poisons were used. All of these methods were of some value as long as labor was cheap. Our present day problem started when the labor costs started up and the sugar industry shifted to long cropping. Until World War II cane was an annual crop. After the war it was shifted to a two year crop, three years in some places. Depending on variety, location, and soil we raise 90 to 130 tons of sugar cane per acre, which produces 7 to 15 tons of sugar per acre for a two year crop. This sugar brings about $135 dollars per ton. This tonnage of cane is a thick tangle of vegetation. The cane grows erect for almost a year, as it continues to grow it bends over at the base. This allows the stalk to rest on the ground or on other stalks of cane as it continues to grow. These stalks form a tangled mat of stalks and dead leaves that may be two feet thick at the time of harvest. At the same time the leafy growing portion of the stalk will be sticking up out of the mat of cane ten feet in the air. Some of these individual stalks may be 30 feet long and still growing at the time of harvest. All this makes it very hard to get through a cane field as it is one long, prolonged stumble over and through the cane. It is in this mat of cane that our three species of rats live. Two species are familiar to most people in the pest control field. Rattus norvegicus and Rattus rattus. In the latter species we include both the black rat and the alexandrine rats, their habits seem to be the same in Hawaii. Our third rat is the Polynesian rat, Rattus exlans, locally called the Hawaiian rat. This is a small rat, the average length head to tip of tail is nine inches and the average body weight is 65 grams. It has dark brownish fur like the alexandrine rats, and a grey belly. It is found in Indonesia, on most of the islands of Oceania and in New Zealand. All three rats live in our cane fields and the brushy and forested portions of our islands. The norway and alexandrine rats are found in and around the villages and farms, the Polynesian rat is only found in the fields and waste areas. The actual amount of damage done by rats is small, but destruction they cause is large. The rats gnaw through the rind of the cane stalk and eat the soft juicy and sweet tissues inside. They will hollow out one to several nodes per stalk attacked. The effect to the cane stalk is like ringing a tree. After this attack the stalk above the chewed portion usually dies, and sometimes the lower portion too. If the rat does not eat through the stalk the cane stalk could go on living and producing sugar at a reduced rate. Generally an injured stalk does not last long. Disease and souring organisms get in the injury and kill the stalk. And if this isn't enough, some insects are attracted to the injured stalk and will sometimes bore in and kill it. An injured stalk of cane doesn't have much of a chance. A rat may only gnaw out six inches of a 30 foot stalk and the whole stalk will die. If the rat only destroyed what he ate we could ignore them but they cause the death of too much cane. This dead, dying, and souring cane cause several direct and indirect tosses. First we lose the sugar that the cane would have produced. We harvest all of our cane mechanically so we haul the dead and souring cane to the mill where we have to grind it with our good cane and the bad cane reduces the purity of the sugar juices we squeeze from the cane. Rats reduce our income and run up our overhead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It may be useful to review some of the considerations that go into recommendations concerning bird management. Later I will make some comments concerning specific methods and devices being used in or promoted for bird control work regardless of whether or not they are new. Members of the National Pest Control Association provide a variety of services, such as fumigation, termite control and general pest control which includes rodent control. There are eight such categories listed in our roster, but only one member in five provides every service listed. Bird control is a rather recent development and is the newest category of service to be listed in the NPCA roster where it appeared for the first time in 1959. As of September 1, 1966, 45% of our members' offices indicated that they were prepared to offer bird control service. Less than 40% did so in 1964. Why is it that more of our members do not declare themselves as ready to do bird control work? I believe the most common answer you would find is that bird control is not yet sufficiently established that they can provide a service comparable in quality to that which is provided against termites or cockroaches or rats. Our members simply do not want to jeopardize their reputation on methods that are not certain or are too complex. Others recognize the emotional reaction evidenced by much of the population concerning control of birds and do not want to become involved in work that might offend some of their clientele. Still others simply do not agree that birds are their responsibility.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As a nation we have gained world recognition for our ability to utilize our resources. In forestry our greatest accomplishments have been in the mechanization of harvest methods and in improvements in forest products. The renewal of this resource has been our greatest neglect. Though the end of the 19th Century marked the beginning of the conservation movement, it was not until a half century later that the force of economics through the demands of a growing population made forest re-establishment more than just a desire. Conservation in itself is a Utopian concept which requires other motivating forces to make it a reality. In the post-war years, and as late as the early 195O's, stocked land in the Pacific Northwest could be purchased for less than the cost of planting; the economic incentive was lacking. Only with sustained yield management and increased land values was there a balance in favor of true values. With greater effort placed on forest regeneration there was an increased need for methods of reducing losses to wildlife. The history of forest wildlife damage research, therefore, parallels that of forest land management; after rather austere beginnings, development became predominantly a response to economics. It was not until 1950 that the full time of one scientist was assigned to this important activity. The development of control methods for forest animal damage is a relatively new area of research. All animal life is dependent upon plants for its existence; forest wildlife is no exception. The removal of seed and foliage of undesirable plants often benefits the land managers; only when the losses or injuries are in conflict with man's interest is there damage involved. Unfortunately, the feeding activities of wildlife and the interests of the land managers are often in conflict. Few realize the breadth, scope, and subtilities associated with forest wildlife damage problems. There are not only numerous species of animals involved, but also a myriad of conditions, each combination possessing unique facets. It is a foregone conclusion that an understanding of the conditions is essential to facilitate a solution to any given problem. Though there are numerous methods of reducing animal damage, all of which have application under some situations, in this discussion emphasis will be placed on the role of chemicals and on western problems. Because of the broadness and complexity of the problem, generalizing is necessary and only brief coverage will be possible. However, an attempt will be made to discuss the use and limitations of various control methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although worldwide distributions of many amphibians and reptiles are declining, a handful of species are spreading rapidly throughout tropical regions of the world. The species that have the greatest effect tend to be generalist feeders, have high reproductive rates, attain large population sizes, and often due to their behavior and or small size, are easily transported or are difficult to detect. The most notable of these species include the coqui frog, cane toad, bullfrog, brown tree snake, and Burmese pythons. The effect of a few individuals typically is small but the combined effect of large populations can be devastating to ecological communities and agriculture. Currently, there are few methods available to effectively remove established populations. However, invasive species management capabilities are developing, with more effective methods in detecting incipient populations, improved control methods, more stringent restrictions on movement of nonnative animals, and increased public support.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Rose-ringed parakeet (Psittacula krameri [Scopdi]) has been reported (Roberts, 1974; Bashir, 1978; Beg, 1978; and DeGrazio, 1978) as a serious bird pest of maize, sunflower, rape seeds, and fruit crops, particularly citrus, mangoes, and guavas, in Pakistan. Estimated annual losses to maize grown for seed alone amount to about 97,000 tons, worth about Pak. Rs. 150 million or US $15 million (Roberts, 1978). Paradoxically, this handsome bright green parakeet is highly esteemed in the pet trade; and limited numbers are also marketed locally and sometimes exported to neighboring countries, particularly the Arab Gulf Emirates, as caged pets. Traditional control methods aimed at scaring or chasing birds from the crops, usually with noise-making devices, are costly; furthermore, they have largely been unsuccessful and time consuming because they require human patrolling before and after normal working hours. They provide at best only temporary relief. The aim of this study was to develop a new decoy trap based on the Modified Australian Crow Trap (MAC), which we propose to call the PAROTRAP, and to evaluate its effectiveness and potential in capturing live parakeets in the field as a possible solution to the parakeet problem, as well as promoting the economic exploitation of trapped parakeets for the pet trade. The study was undertaken during March and June 1979 as a part of the UNDP/FAO Project No. PAK/71/554, assisting Pakistan Vertebrate Pest Control Centre in developing and improving control techniques to prevent or reduce bird damage to important crops. Our earlier trials showed that parakeets could be induced to enter a conventionally designed MAC trap, and that after some time they learned how to escape from it. Therefore, a series of minor modifications were introduced and field tested.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To open this Third Vertebrate Pest Conference is a real privilege. It is a pleasure to welcome all of you in attendance, and I know there are others who would like to be meeting with us, but, for one reason or another cannot be. However, we can serve them by taking back the results of discussion and by making available the printed transactions of what is said here. It has been the interest and demand for the proceedings of the two previous conferen- ces which, along with personal contacts many of you have with the sponsoring committee, have gauged the need for continuing these meetings. The National Pest Control Association officers who printed the 1962 proceedings still are supplying copies of that conference. Two reprintings of the 1964 conference have been necessary and repeat orders from several universities indicate that those proceedings have become textbooks for special classes. When Dr. Howard mentioned in opening the first Conference in 1962 that publication of those papers would make a valuable handbook of animal control, he was prophetic, indeed. We are pleased that this has happened, but not surprised, since to many of us in this specialized field, the conferences have provided a unique opportunity to meet colleagues with similar interests, to exchange information on control techniques and to be informed by research workers of problem solving investigations as well as to hear of promising basic research. The development of research is a two-way street and we think these conferences also identify areas of inadequate knowledge, thereby stimulating needed research. We have represented here a number of types of specialists—animal ecologists, public health and transmissible disease experts, control methods specialists, public agency administration and enforcement staffs, agricultural extension people, manufacturing and sale industry representatives, commercial pest control operators, and others—and in addition to improving communications among these professional groups an equally important purpose of these conferences is to improve understanding between them and the general public. Within the term general public are many individuals and also organizations dedicated to appreciation and protection of certain animal forms or animal life in general. Proper concepts of vertebrate pest control do not conflict with such views. It is worth repeating for the record the definition of "vertebrate pest" which has been stated at our previous conferences. "A vertebrate pest is any native or introduced, wild or feral, non-human spe- cies of vertebrate animal that is currently troublesome locally or over a wide area to one or more persons either by being a general nuisance, a health hazard or by destroying food or natural resources. In other words, vertebrate pest status is not an inherent quality or fixed classification but is a circumstantial relationship to man's interests." I believe progress has been made in reducing the misunderstanding and emotion with which vertebrate pest control was formerly treated whenever a necessity for control was stated. If this is true, I likewise believe it is deserved, because control methods and programs have progressed. Control no longer refers only to population reductions by lethal means. We have learned something of alternate control approaches and the necessity for studying the total environment; where reduction of pest animal numbers is the required solution to a problem situation we have a wider choice of more selective, safe and efficient materials. Although increased attention has been given to control methods, research when we take a close look at the severity of animal damage to so many facets of our economy, particularly to agricultural production and public health, we realize it still is pitifully small and slow. The tremendous acceleration of the world's food and health requirements seems to demand expediting vertebrate pest control to effectively neutralize the enormous impact of animal damage to vital resources. The efforts we are making here at problem delineation, idea communication and exchange of methodology could well serve as both nucleus and rough model for a broader application elsewhere. I know we all hope this Third Conference will advance these general objectives, and I think there is no doubt of its value in increasing our own scope of information.