2 resultados para Contact spare
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Objective—To investigate the infection of calves with Mycobacterium bovis through oral exposure and transmission of M bovis from experimentally infected white-tailed deer to uninfected cattle through indirect contact. Animals—24 11-month-old, white-tailed deer and 28 6-month-old, crossbred calves. Procedure—In the oral exposure experiment, doses of 4.3 X 106 CFUs (high dose) or 5 X 103 CFUs (low dose) of M bovis were each administered orally to 4 calves; as positive controls, 2 calves received M bovis (1.7 X 105 CFUs) via tonsillar instillation. Calves were euthanatized and examined 133 days after exposure. Deer-to-cattle transmission was assessed in 2 phases (involving 9 uninfected calves and 12 deer each); deer were inoculated with 4 X 105 CFUs (phase I) or 7 X 105 CFUs (phase II) of M Bovis. Calves and deer exchanged pens (phase I; 90 days’ duration) or calves received uneaten feed from deer pens (phase II; 140 days’ duration) daily. At completion, animals were euthanatized and tissues were collected for bacteriologic culture and histologic examination. Results—In the low- and high-dose groups, 3 of 4 calves and 1 of 4 calves developed tuberculosis, respectively. In phases I and II, 9 of 9 calves and 4 of 9 calves developed tuberculosis, respectively. Conclusions and Clinical Relevance—Results indicated that experimentally infected deer can transmit M bovis to cattle through sharing of feed. In areas where tuberculosis is endemic in free-ranging white-tailed deer, management practices to prevent access of wildlife to feed intended for livestock should be implemented.
Resumo:
The next-generation SONET metro network is evolving into a service-rich infrastructure. At the edge of such a network, multi-service provisioning platforms (MSPPs) provide efficient data mapping enabled by Generic Framing Procedure (GFP) and Virtual Concatenation (VC). The core of the network tends to be a meshed architecture equipped with Multi-Service Switches (MSSs). In the context of these emerging technologies, we propose a load-balancing spare capacity reallocation approach to improve network utilization in the next-generation SONET metro networks. Using our approach, carriers can postpone network upgrades, resulting in increased revenue with reduced capital expenditures (CAPEX). For the first time, we consider the spare capacity reallocation problem from a capacity upgrade and network planning perspective. Our approach can operate in the context of shared-path protection (with backup multiplexing) because it reallocates spare capacity without disrupting working services. Unlike previous spare capacity reallocation approaches which aim at minimizing total spare capacity, our load-balancing approach minimizes the network load vector (NLV), which is a novel metric that reflects the network load distribution. Because NLV takes into consideration both uniform and non-uniform link capacity distribution, our approach can benefit both uniform and non-uniform networks. We develop a greedy loadbalancing spare capacity reallocation (GLB-SCR) heuristic algorithm to implement this approach. Our experimental results show that GLB-SCR outperforms a previously proposed algorithm (SSR) in terms of established connection capacity and total network capacity in both uniform and non-uniform networks.