2 resultados para Computational time
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Composites are engineered materials that take advantage of the particular properties of each of its two or more constituents. They are designed to be stronger, lighter and to last longer which can lead to the creation of safer protection gear, more fuel efficient transportation methods and more affordable materials, among other examples. This thesis proposes a numerical and analytical verification of an in-house developed multiscale model for predicting the mechanical behavior of composite materials with various configurations subjected to impact loading. This verification is done by comparing the results obtained with analytical and numerical solutions with the results found when using the model. The model takes into account the heterogeneity of the materials that can only be noticed at smaller length scales, based on the fundamental structural properties of each of the composite’s constituents. This model can potentially reduce or eliminate the need of costly and time consuming experiments that are necessary for material characterization since it relies strictly upon the fundamental structural properties of each of the composite’s constituents. The results from simulations using the multiscale model were compared against results from direct simulations using over-killed meshes, which considered all heterogeneities explicitly in the global scale, indicating that the model is an accurate and fast tool to model composites under impact loads. Advisor: David H. Allen
Generalizing the dynamic field theory of spatial cognition across real and developmental time scales
Resumo:
Within cognitive neuroscience, computational models are designed to provide insights into the organization of behavior while adhering to neural principles. These models should provide sufficient specificity to generate novel predictions while maintaining the generality needed to capture behavior across tasks and/or time scales. This paper presents one such model, the Dynamic Field Theory (DFT) of spatial cognition, showing new simulations that provide a demonstration proof that the theory generalizes across developmental changes in performance in four tasks—the Piagetian A-not-B task, a sandbox version of the A-not-B task, a canonical spatial recall task, and a position discrimination task. Model simulations demonstrate that the DFT can accomplish both specificity—generating novel, testable predictions—and generality—spanning multiple tasks across development with a relatively simple developmental hypothesis. Critically, the DFT achieves generality across tasks and time scales with no modification to its basic structure and with a strong commitment to neural principles. The only change necessary to capture development in the model was an increase in the precision of the tuning of receptive fields as well as an increase in the precision of local excitatory interactions among neurons in the model. These small quantitative changes were sufficient to move the model through a set of quantitative and qualitative behavioral changes that span the age range from 8 months to 6 years and into adulthood. We conclude by considering how the DFT is positioned in the literature, the challenges on the horizon for our framework, and how a dynamic field approach can yield new insights into development from a computational cognitive neuroscience perspective.