3 resultados para Computational Intelligence in data-driven and hybrid Models and Data Analysis

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic conferencing refers to a scenario wherein any subset of users in a universe of users form a conference for sharing confidential information among themselves. The key distribution (KD) problem in dynamic conferencing is to compute a shared secret key for such a dynamically formed conference. In literature, the KD schemes for dynamic conferencing either are computationally unscalable or require communication among users, which is undesirable. The extended symmetric polynomial based dynamic conferencing scheme (ESPDCS) is one such KD scheme which has a high computational complexity that is universe size dependent. In this paper we present an enhancement to the ESPDCS scheme to develop a KD scheme called universe-independent SPDCS (UI-SPDCS) such that its complexity is independent of the universe size. However, the UI-SPDCS scheme does not scale with the conference size. We propose a relatively scalable KD scheme termed as DH-SPDCS that uses the UI-SPDCS scheme and the tree-based group Diffie- Hellman (TGDH) key exchange protocol. The proposed DH-SPDCS scheme provides a configurable trade-off between computation and communication complexity of the scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analytical model for Virtual Topology Reconfiguration (VTR) in optical networks is developed. It aims at the optical networks with a circuit-based data plane and an IPlike control plane. By identifying and analyzing the important factors impacting the network performance due to VTR operations on both planes, we can compare the benefits and penalties of different VTR algorithms and policies. The best VTR scenario can be adaptively chosen from a set of such algorithms and policies according to the real-time network situations. For this purpose, a cost model integrating all these factors is created to provide a comparison criterion independent of any specific VTR algorithm and policy. A case study based on simulation experiments is conducted to illustrate the application of our models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most authors struggle to pick a title that adequately conveys all of the material covered in a book. When I first saw Applied Spatial Data Analysis with R, I expected a review of spatial statistical models and their applications in packages (libraries) from the CRAN site of R. The authors’ title is not misleading, but I was very pleasantly surprised by how deep the word “applied” is here. The first half of the book essentially covers how R handles spatial data. To some statisticians this may be boring. Do you want, or need, to know the difference between S3 and S4 classes, how spatial objects in R are organized, and how various methods work on the spatial objects? A few years ago I would have said “no,” especially to the “want” part. Just let me slap my EXCEL spreadsheet into R and run some spatial functions on it. Unfortunately, the world is not so simple, and ultimately we want to minimize effort to get all of our spatial analyses accomplished. The first half of this book certainly convinced me that some extra effort in organizing my data into certain spatial class structures makes the analysis easier and less subject to mistakes. I also admit that I found it very interesting and I learned a lot.