2 resultados para Chloro-Substituted Lutetium Bisphthalocyanine
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Large winter roosts of blackbirds (Icteridae) and starlings (Sturnus vulgaris) often cause conflicts, both real and imagined, between the birds and local human popula- tions. These conflicts may range from objections to the noise and odor engendered by thousands or millions of birds, to fear of epidemic human and livestock diseases, and the possibility of economic losses from crop depredations. Many people believe the most direct way to combat these conflicts is to reduce local roosting populations by kill- ing the birds. In response to this perceived need for a roost toxicant, the U.S. Fish and Wildlife Service (FWS) developed PA-14, a surfactant which can be aerially applied to problem roosts for population reduction (Lefebvre and Seubert 1970). Successful use of this material, however, requires concurrent rainfall and low temperatures, conditions which may not occur sufficiently often to permit roost treatment at desired times or places. Because of this difficulty, and continued pressures from management person- nel and the agricultural community, the Service has continued its search for a safe, ef- fective roost toxicant usable without severe weather restrictions. One of the current candidate materials is N-(3-chloro-4-methylphenyl)acetamide (CAT, DRC-2698), a derivative of StarlicideR (DRC-1339). This compound was initially developed by S.A. Peoples of the University of California-Davis (Peoples et al. 1976). California researchers are still investigating the avicidal potential of CAT, mainly on baits and in wick perches, while FWS interest has centered thus far on its possible utility as an aerially applied roost treatment. This report is a summary of our investigations to date.
Resumo:
Bird depredations in Virginia have been estimated by the Extension Service, State Department of Agriculture, and the Division of Wildlife Services to be approxi¬mately $5,000,000 annually. As part of a continuing program to reduce this damage, these agencies have tested certain experimental techniques using the avicide, 3, chloro-p-toluidine, chosen for its relative selectivity, low secondary hazard, and slow action. The situations in which the avicide was tested were feedlots, decoy crops, roost reduction, and pigeon control.