13 resultados para Cattle slurry
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Bovine tuberculosis, caused by infection with Mycobacterium bovis, is a re-emerging zoonotic disease. It has staged a comeback by establishing infections in wildlife and cattle, creating the potential for human disease in locations where it was thought to be under control. In northwestern Minnesota, infected cattle and white-tailed deer were first discovered in 2005. A major bovine tuberculosis eradication campaign is underway in the state, with multiple efforts employed to control M. bovis infection in both cattle and deer populations. In order to effectively eradicate bovine tuberculosis in Minnesota, there is a need for better understanding of the factors that increase the risk of deer and cattle interacting in a way that facilitates tuberculosis transmission. By reducing the risk of disease transmission within the animal populations, we will also reduce the risk that bovine tuberculosis will again become a common disease in human populations. The purpose of this study is to characterize the risk of interactions between cattle and white-tailed deer in northern Minnesota in order to prevent M. bovis transmission. A survey originally developed to assess deer-cattle interactions in Michigan was modified for use in Minnesota, introducing a scoring method to evaluate the areas of highest priority at risk of potential deer-cattle interaction. The resulting semi-quantitative deer-cattle interaction risk assessment was used at 53 cattle herds located in the region adjacent to the bovine tuberculosis “Core Area”. Two evaluators each scored the farm separately, and then created a management plan for the farm that prioritized the areas of greatest risk for deer-cattle interactions. Herds located within the “Management Zone” were evaluated by Minnesota Board of Animal Health staff, and results from these surveys were used as a point of comparison.
Resumo:
Objective—To identify major environmental and farm management factors associated with the occurrence of tuberculosis (TB) on cattle farms in northeastern Michigan. Design—Case-control study. Sample Population—17 cattle farms with infected cattle and 51 control farms. Procedure—Each case farm (laboratory confirmed diagnosis of Mycobacterium bovis infection) was matched with 2 to 4 control farms (negative whole-herd test results within previous 12 months) on the basis of type of farm (dairy or beef) and location. Cattle farm data were collected from in-person interviews and mailed questionnaires. Wildlife TB data were gathered through state wildlife surveillance. Environmental data were gathered from a satellite image-based geographic information system. Multivariable conditional logistic regression for matched analysis was performed. Results—Major factors associated with increased farm risk of TB were higher TB prevalence among wild deer and cattle farms in the area, herd size, and ponds or creeks in cattle housing areas. Factors associated with reduced farm risk of TB were greater amounts of natural open lands in the surrounding area and reducing deer access to cattle housing areas by housing cattle in barns, barnyards, or feedlots and use of electrified wire or barbed wire for livestock fencing. Conclusions and Clinical Relevance—Results suggest that certain environmental and management factors may be associated with risk of TB on cattle farms.
Resumo:
Background: In the British Isles, control of cattle tuberculosis (TB) is hindered by persistent infection of wild badger (Meles meles) populations. A large-scale field trial—the Randomised Badger Culling Trial (RBCT)—previously showed that widespread badger culling produced modest reductions in cattle TB incidence during culling, which were offset by elevated TB risks for cattle on adjoining lands. Once culling was halted, beneficial effects inside culling areas increased, while detrimental effects on adjoining lands disappeared. However, a full assessment of the utility of badger culling requires information on the duration of culling effects. Methodology/Principal Findings: We monitored cattle TB incidence in and around RBCT areas after culling ended. We found that benefits inside culled areas declined over time, and were no longer detectable by three years post-culling. On adjoining lands, a trend suggesting beneficial effects immediately after the end of culling was insignificant, and disappeared after 18 months post-culling. From completion of the first cull to the loss of detectable effects (an average five-year culling period plus 2.5 years post-culling), cattle TB incidence was 28.7% lower (95% confidence interval [CI] 20.7 to 35.8% lower) inside ten 100 km2 culled areas than inside ten matched no-culling areas, and comparable (11.7% higher, 95% CI: 13.0% lower to 43.4% higher, p = 0.39) on lands #2 km outside culled and no-culling areas. The financial costs of culling an idealized 150 km2 area would exceed the savings achieved through reduced cattle TB, by factors of 2 to 3.5. Conclusions/Significance: Our findings show that the reductions in cattle TB incidence achieved by repeated badger culling were not sustained in the long term after culling ended and did not offset the financial costs of culling. These results, combined with evaluation of alternative culling methods, suggest that badger culling is unlikely to contribute effectively to the control of cattle TB in Britain.
Resumo:
Bovine tuberculosis (Mycobacterium bovis) was discovered in northern Michigan white-tailed deer (Odocoileus virginianus) in 1994, and has been known to exist in Michigan cattle herds since 1998. Despite efforts to eradicate the disease in cattle, infection and re-infection of farms continues to occur, suggesting transmission among cattle, deer, or other wildlife reservoirs. The goals of this study were to document wildlife activity on farms and evaluate the possible role wildlife play in the ecology of bovine tuberculosis (TB) in Michigan. Visual observations were conducted on farms in a 5-county area of northern Michigan to document direct wildlife-cattle interactions (i.e., <5 m between individuals) and indirect interactions (e.g., wildlife visitations to food stores and areas accessible to cattle). Observations were conducted primarily during evening and early morning hours between January and August, 2002, and on a 24-hour schedule between January and August, 2003. Total observation time accumulated through the duration of the study was 1,780 hours. Results indicated that direct interaction between deer and cattle was a rare event; no direct interactions were observed during the first year, and only one direct interaction was observed during the second year. However, through the duration of the study 21 direct interactions were documented between cattle and turkey, and 11 direct interactions were documented between cattle and mammals other than deer. In total, 273 indirect interactions by deer, 112 indirect interactions by turkeys, and 248 indirect interactions by mammals other than deer were observed during the 2 field seasons combined. These data supported the hypothesis that indirect interactions among wildlife and cattle are a potential mechanism for the transmission of TB in Michigan. If direct interactions were important mechanisms of TB transmission to cattle in northern Michigan, my data suggested that feral cats were the species of most concern, even though there were more observations between turkey and cattle. Unlike cats, which can become infected with and transmit TB, there is no evidence for such pathogenesis in turkey.
Resumo:
Objective—To investigate the infection of calves with Mycobacterium bovis through oral exposure and transmission of M bovis from experimentally infected white-tailed deer to uninfected cattle through indirect contact. Animals—24 11-month-old, white-tailed deer and 28 6-month-old, crossbred calves. Procedure—In the oral exposure experiment, doses of 4.3 X 106 CFUs (high dose) or 5 X 103 CFUs (low dose) of M bovis were each administered orally to 4 calves; as positive controls, 2 calves received M bovis (1.7 X 105 CFUs) via tonsillar instillation. Calves were euthanatized and examined 133 days after exposure. Deer-to-cattle transmission was assessed in 2 phases (involving 9 uninfected calves and 12 deer each); deer were inoculated with 4 X 105 CFUs (phase I) or 7 X 105 CFUs (phase II) of M Bovis. Calves and deer exchanged pens (phase I; 90 days’ duration) or calves received uneaten feed from deer pens (phase II; 140 days’ duration) daily. At completion, animals were euthanatized and tissues were collected for bacteriologic culture and histologic examination. Results—In the low- and high-dose groups, 3 of 4 calves and 1 of 4 calves developed tuberculosis, respectively. In phases I and II, 9 of 9 calves and 4 of 9 calves developed tuberculosis, respectively. Conclusions and Clinical Relevance—Results indicated that experimentally infected deer can transmit M bovis to cattle through sharing of feed. In areas where tuberculosis is endemic in free-ranging white-tailed deer, management practices to prevent access of wildlife to feed intended for livestock should be implemented.
Resumo:
Varying economic conditions and changes in the demands of the meat consuming public have been responsible for the turns that have taken place in the beef industry during recent years. Both feeder and producer must recognize and conform to these changes if they are to continue in business. Among the most important of these changes have been the turn toward the marketing of lighter cattle and the gradual disappearance from feed lots of two- and three-year-old animals. Furthermore, the cattle population of the United States is fast reaching stabilization with the resulting effect that more heifers are being marketed, since only one-fourth of the heifer crop is needed to replace worn-out breeding animals. Realizing the increasing importance of the heifer problem from the standpoint of the producer, feeder, and consumer, the Nebraska Experiment Station undertook to compare steers and heifers in a series of trials both in the feedlot and in the beef. It was hoped that these experiments would yield results which would bring out existing differences, if any, between steers and heifers both in quality and quantity of beef produced and thus provide or disprove many of the complaints against heifers. The results of these trials are summarized in this bulletin. Age as well as the sex factor has been considered, since two-year-olds, yearlings, and calves were included in these trials.
Resumo:
An epidemiological survey for the monitoring of bovine tuberculosis transmission was carried out in western Liguria, a region in northern Italy. Fifteen Mycobacterium bovis strains were isolated from 63 wild boar samples (62 from mandibular lymph nodes and 1 from a liver specimen). Sixteen mediastinal lymph nodes of 16 head of cattle were collected, and 15 Mycobacterium bovis strains were subsequently cultured. All M. bovisstrains isolated from cattle and wild boars were genotyped by spoligotyping and by restriction fragment length polymorphism (RFLP) analysis with the IS6110 and IS1081 probes. All M. bovis strains showed the typical spoligotype characterized by the absence of the 39 to 43 spacers in comparison with the number in M. tuberculosis. A total of nine different clusters were identified by spoligotyping. The largest cluster included 9 strains isolated from wild boars and 11 strains isolated from cattle, thus confirming the possibility of transmission between the two animal species. Fingerprinting by RFLP analysis with the IS6110 probe showed an identical single-band pattern for 29 of 30 strains analyzed, and only 1 strain presented a five-band pattern. The use of IS1081 as a second probe was useful for differentiation of M. bovis from M. bovis BCG but not for differentiation among M. bovis strains, which presented the same undifferentiated genomic profile. In relation to the epidemiological investigation, we hypothesized that the feeding in pastures contaminated by cattle discharges could represent the most probable route of transmission of M. bovis between the two animal species. In conclusion, our results confirmed the higher discriminatory power of spoligotyping in relation to that of RFLP analysis for the differentiation of M. bovis genomic profiles. Our data showed the presence of a common M. bovis genotype in both cattle and wild boars, confirming the possible interspecies transmission of M. bovis.
Resumo:
Livestock face complex foraging options associated with optimizing nutrient intake while being able to avoid areas posing risk of parasites or disease. Areas of tall nutrient-rich swards around fecal deposits may be attractive for grazing, but might incur fitness costs from parasites. We use the example of dairy cattle and the risks of tuberculosis transmission posed to them by pastures contaminated with badger excreta to examine this trade-off. A risk may be posed either by aerosolized inhalation through investigation or by ingestion via grazing contaminated swards. We quantified the levels of investigation and grazing of 150 dairy cows at badger latrines (accumulations of feces and urine) and crossing points (urination-only sites). Grazing behavior was compared between strip-grazed and rotation-grazed fields. Strip grazing had fields subdivided for grazing periods of <24 h, whereas rotational grazing involved access to whole fields for 1 to 7 d each. A higher proportion of the herd investigated badger latrines than crossing points or controls. Cattle initially avoided swards around badger latrines but not around crossing points. Avoidance periods were shorter in strip- compared with rotation-grazing systems. In rotation-grazing management, latrines were avoided for longer times, but there were more investigative contacts than with strip-grazing management. If investigation is a major route of tuberculosis transmission, the risk to cattle is greatest in extensive rotation-grazing systems. However, if ingestion of fresh urine is the primary method of transmission, strip-grazing management may pose a greater threat. Farming systems affect the level and type of contact between livestock and wildlife excreta and thus the risks of disease.
Resumo:
I’m so pleased to be here with you today, and I look forward to visiting and working with members of this group now and in the future. Since arriving in Nebraska nearly a year ago now on a snowy, blustery day, I’ve been delighted to take every opportunity that comes my way to get to know Nebraska and Nebraskans better. I want to know what you think are Nebraska’s greatest needs, now and in the future. I want to know how you think the University of Nebraska Institute of Agriculture and Natural Resources can help meet those needs. I seek ways all of us, working together, can find the most efficient and effective solutions for Nebraska’s concerns.
Resumo:
Wild and domestic ungulates modify their behavior in the presence of olfactory and visual cues of predators but investigations have not exposed a domestic species to a series of cues representing various predators and other ungulate herbivores.We used wolf (Canis lupus), mountain lion (Puma concolor), and mule deer (Odocoileus hemionus) stimuli (olfactory and visual), and a control (no stimuli) to experimentally test for differences in behavior of cattle (Bos taurus) raised in Arizona. We measured (1) vigilance, (2) foraging rates, (3) giving up density (GUD) of high quality foods and (4) time spent in high quality forage locations in response to location of stimuli treatments. In general, we found a consistent pattern in that wolf and deer treatments caused disparate results in all 4 response variables. Wolf stimuli significantly increased cattle vigilance and decreased cattle foraging rates; conversely, deer stimuli significantly increased cattle foraging rate and increased cattle use of high quality forage areas containing stimuli. Mountain lion stimuli did not significantly impact any of the 4 response variables. Our findings suggest that domestic herbivores react to predatory stimuli, can differentiate between stimuli representing two predatory species, and suggest that cattle may reduce antipredatory behaviour when near heterospecifics.
Resumo:
Disease transmission between wildlife and livestock is a worldwide issue. Society needs better methods to prevent interspecies transmission to reduce disease risks. Producers have successfully used livestock protection dogs (LPDs) for thousands of years to reduce predation. We theorized that LPDs raised and bonded with cattle could be used to also reduce risk of bovine tuberculosis (Myobacterium bovis; TB) transmission between white-tailed deer (Odocoileus virginianus) and cattle by minimizing contact between the 2 species and use of cattle feed by deer. We evaluated 4 LPDs over 5 months, utilizing 2 data collection methods (direct observation and motion-activated video) on deer farms that supported higher densities than wild populations. Dogs were highly effective in preventing deer from using concentrated cattle feed (hay bales), likely the greatest risk factor of TB transmission on farms. Dogs also prevented deer from approaching cattle in core areas of pastures (near hay bales) and were very effective throughout pastures. Our research supports the theory that LPDs, specifically trained to remain with cattle, may be a practical tool to minimize potential for livestock to contract TB from infected deer in small-scale cattle operations. Where disease is present in deer, it may be possible to reduce the potential for disease transmission by employing LPDs.
Resumo:
During ethanol production, starch is the primary nutrient fermented and the remaining byproducts are excellent sources of fiber and protein. In addition, inclusion of byproducts in finishing diets may reduce the incidence of acidosis. As a result, roughage level and quality could potentially be reduced in finishing diets containing byproducts. Three experiments were conducted to examine the effects of roughage and wet corn gluten feed (WCGF) in finishing cattle diets containing corn distillers grains plus solubles. Cattle fed finishing diets containing wet distillers grains plus solubles (WDGS) with no roughage had decreased DMI and ADG compared to cattle fed roughage. Within roughage level, ADG was similar for cattle fed alfalfa hay, corn silage or corn stalks when included on an equal NDF basis. Apparent total tract digestibility of OM, NDF, and CP linearly decreased and ruminal pH variables increased linearly due to increasing roughage levels. Roughage sources can be exchanged on an equal NDF basis in beef finishing diets containing 30% WDGS (DM basis). In finishing diets containing modified distillers grains plus solubles (MDGS), DMI linearly increased due to increasing roughage levels but ADG responded quadratically and was lowest for cattle fed diets without roughage. There was also a quadratic response for DMI and ADG due to WCGF inclusion level. Gain:feed decreased linearly with increasing roughage and WCGF inclusion levels. Feeding 15% WCGF resulted in similar cattle performance and carcass traits to cattle fed no WCGF in diets containing 30% MDGS, but cattle fed diets with 60% total byproduct inclusion made up of 30% WCGF and 30% MDGS had reduced performance (DM basis). Additionally, reducing corn silage inclusion level to 7.5% resulted in similar finishing cattle performance and carcass traits to cattle fed 15% corn silage in diets containing 30% MDGS with or without inclusion of WCGF. Elimination of roughage in diets containing either WDGS or MDGS resulted in negative impacts on finishing cattle performance, ruminal metabolism, and carcass traits.
Resumo:
We monitored behavior of cattle egrets (Bubulcus ibis) during a population control program to reduce egret-aircraft strike hazards from a small heronry near the Hilo, Hawaii, airport. Results verified that attempts to move egrets from undesirable roost sites should be undertaken before nesting begins. Although possibly compounded by previous treatments, our observations also indicate that 1) egrets may abandon a new roost in response to a few dead egrets placed in clear view around the roost, and 2) shooting at egrets as they attempt to land at a traditional feeding site causes long-term avoidance of the area. Rapid repopulation after control indicates that techniques to move roosts and prevent congregations are more likely than population control to resolve problems.