3 resultados para Catch and Release

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

North Pacific right whales (Eubalaena japonica) were extensively exploited in the 19th century, and their recovery was further retarded (severely so in the eastern population) by illegal Soviet catches in the 20th century, primarily in the 1960s. Monthly plots of right whale sightings and catches from both the 19th and 20th centuries are provided, using data summarized by Scarff (1991, from the whale charts of Matthew Fontaine Maury) and Brownell et al. (2001), respectively. Right whales had an extensive offshore distribution in the 19th century, and were common in areas (such as the Gulf of Alaska and Sea of Japan) where few or no right whales occur today. Seasonal movements of right whales are apparent in the data, although to some extent these reflect survey and whaling effort. That said, these seasonal movements indicate a general northward migration in spring from lower latitudes, and major concentrations above 40°N in summer. Sightings diminished and occurred further south in autumn, and few animals were recorded anywhere in winter. These north-south migratory movements support the hypothesis of two largely discrete populations of right whales in the eastern and western North Pacific. Overall, these analyses confirm that the size and range of the right whale population is now considerably diminished in the North Pacific relative to the situation during the peak period of whaling for this species in the 19th century. For management purposes, new surveys are urgently required to establish the present distribution of this species; existing data suggest that the Bering Sea, the Gulf of Alaska, the Okhotsk Sea, the Kuril Islands and the coast of Kamchatka are the areas with the greatest likelihood of finding right whales today.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Morishita’s “multiple analysis”of the whaling issue [Morishita J. Multiple analysis of the whaling issue: Understanding the dispute by a matrix. Marine Policy 2006;30:802–8] is essentially a restatement of the Government of Japan’s whaling policy, which confuses the issue through selective use of data, unsubstantiated facts, and the vilification of opposing perspectives. Here, we deconstruct the major problems with Morishita’s article and provide an alternative view of the whaling dispute. For many people in this debate, the issue is not that some whales are not abundant, but that the whaling industry cannot be trusted to regulate itself or to honestly assess the status of potentially exploitable populations. This suspicion has its origin in Japan’s poor use of science, its often implausible stock assessments, its insistence that culling is an appropriate way to manage marine mammal populations, and its relatively recent falsification of whaling and fisheries catch data combined with a refusal to accept true transparency in catch and market monitoring. Japanese policy on whaling cannot be viewed in isolation, but is part of a larger framework involving a perceived right to secure unlimited access to global marine resources. Whaling is inextricably tied to the international fisheries agreements on which Japan is strongly dependent; thus, concessions made at the IWC would have potentially serious ramifications in other fora.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Myxobolus cerebralis, the cause of whirling disease in salmonids, has dispersed to waters in 25 states within the USA, often by an unknown vector. Its incidence in Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri within the highly protected environment of Yellowstone Lake, Yellowstone National Park, is a prime example. Given the local abundances of piscivorous birds, we sought to clarify their potential role in the dissemination of M. cerebralis. Six individuals from each of three bird species (American white pelican Pelecanus erythrorhynchos, double-crested cormorant Phalacrocorax auritus, and great blue heron Ardea herodias) were fed known-infected or uninfected rainbow trout O. mykiss. Fecal material produced during 10-d periods before and after feeding was collected to determine whether M. cerebralis could be detected and, if so, whether it remained viable after passage through the gastrointestinal tract of these birds. For all (100%) of the nine birds fed known-infected fish, fecal samples collected during days 1–4 after feeding tested positive for M. cerebralis by polymerase chain reaction. In addition, tubificid worms Tubifex tubifex that were fed fecal material from known-infected great blue herons produced triactinomyxons in laboratory cultures, confirming the persistent viability of the parasite. No triactinomyxons were produced from T. tubifex fed fecal material from known-infected American white pelicans or double-crested cormorants, indicating a potential loss of parasite viability in these species. Great blue herons have the ability to concentrate and release viable myxospores into shallow-water habitats that are highly suitable for T. tubifex, thereby supporting a positive feedback loop in which the proliferation of M. cerebralis is enhanced. The presence of avian piscivores as an important component of aquatic ecosystems should continue to be supported. However, given the distances traveled by great blue herons between rookeries and foraging areas in just days, any practices that unnaturally attract them may heighten the probability of M. cerebralis dispersal and proliferation within the Greater Yellowstone Ecosystem.