5 resultados para Catapults (aircraft launchers)
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Airports worldwide are at a disadvantage when it comes to being able to spot birds and warn aircrews about the location of flocks either on the ground or close to the airfield. Birds simply cannot be easily seen during the day and are nearly invisible targets for planes at night or during low visibility. Thermal imaging (infrared) devices can be used to allow ground and tower personnel to pinpoint bird locations day or night, thus giving the airport operators the ability to launch countermeasures or simply warn the aircrews. This technology is available now, though it has been predominately isolated to medical and military system modifications. The cost of these devices has dropped significantly in recent years as technology, capability, and availability have continued to increase. Davison Army Airfield (DAAF), which is located about 20 miles south of Ronald Reagan National Airport in Washington, DC, is the transient home to many bird species including an abundance of ducks, seagulls, pigeons, and migrating Canadian geese. Over the past few years, DAAF implemented a variety of measures in an attempt to control the bird hazards on the airfield. Unfortunately, when it came to controlling these birds on or near our runways and aircraft movement areas we were more reactive than proactive. We would do airfield checks several times an hour to detect and deter any birds in these areas. The deterrents used included vehicle/human presence, pyrotechnics, and the periodic use of a trained border collie. At the time, we felt like we were doing all we could to reduce the threat to aircraft and human life. It was not until a near fatal accident in October 1998, when we truly realized how dangerous our operating environment really was to aircraft at or near the airfield. It was at this time, we had a C-12 (twin-engine passenger plane) land on our primary runway at night. The tower cleared the aircraft to land, and upon touchdown to the runway the aircraft collided with a flock of geese. Neither the tower nor the crew of the aircraft saw the geese because they were obscured in the darkness. The end result was 12 dead geese and $374,000 damage to the C-12. Fortunately, there were no human fatalities, but it was painfully clear we needed to improve our method of clearing the runway at night and during low visibility conditions. It was through this realization that we ventured to the U.S. Army Communications and Electronics Command for ideas on ways to deal with our threat. It was through a sub-organization within this command, Night Vision Labs, that we realized the possibilities of modifying thermal imagery and infrared technology to detecting wildlife on airports.
Resumo:
When I spoke to the third Bird Control Seminar in 1966 on "Ecological Control of Bird Hazards to Aircraft", I reviewed what we had accomplished up to that time. I spoke about the extent of the problem, the bird species involved and the methods we used to make the airports less attractive to birds that created hazards to aircraft. I wish to discuss today our accomplishments since 1966. I have presented a number of papers on the topic including one with Dr. W. W. H. Gunn, in 1967 at a meeting in the United Kingdom, and others in the United States (1968 and 1970) and at the World Conference on Bird Hazards to Aircraft in Canada in 1969. There is no longer any question about the consequences of collision between birds and aircraft. Aircraft have not become less vulnerable either. Engines on the Boeing 747 have been changed as a result of damage caused by ingested birds. Figures crossing my desk daily show that while we are reducing the number of serious incidents and cutting down repair costs, we will continue to have bird strikes. Modification of the airport environment (Solman, 1966) has gone on continuously since 1963. The Department of Transport of Canada has spent more than 10 million dollars modifying major Canadian airports to reduce their attractiveness to birds. Modifications are still going on and will continue until bird attraction has been reduced to a minimum.
Resumo:
Bird-aircraft strikes at the Atlantic City International Airport (ACY) increased from 18 in 1989 to 37 in 1990. The number of bird-aircraft strikes involving gulls (Larus spp.) during this time rose from 6 to 27, a 350% increase. The predominant species involved in bird strikes was the laughing gull (L. atricilla). Pursuant to an interagency agreement between the U.S. Department of Transportation (USDOT), Federal Aviation Administration (FAA) and the U.S. Department of Agriculture (USDA)l Animal and Plant Health Inspection Service (APHIS)/Animal Damage Control (ADC), ADC established a Emergency/Experimental Bird Hazard Reduction Force (BHFF) at ACY in 1991. An Environmental Assessment (EA) and Finding of No Significant Impact (FONSI) for the 1991 Emergency/Experimental BHRF was executed and signed by the FAA on 19 May 1991. The BHRF was adopted at this time by the FAA Technical Center as an annual program to reduce bird strikes at ACY. The BHRF goals are to minimize or eliminate the incidence of bird-aircraft strikes and runway closures due to increased bird activities. A BHRF team consisting of ADC personnel patrolled ACY for 95 days from 26 May until 28 August 1992, for a total of 2,949 person-hours. The BHRF used a combination of pyrotechnics, amplified gull distress tapes and live ammunition to harass gulls away from the airport from dawn to dusk. Gullaircraft strikes were reduced during BHRF operations in 1992 by 86% compared to gull strikes during summer months of 1990 when there was not a BHRF team. Runway closures due to bird activity decreased 100% compared to 1990 and 1991 closures. The BHRF should continue at ACY as long as birds are a threat to human safety and aircraft operations.
Resumo:
Embry-Riddle Aeronautical University (Prescott, AZ, USA) was awarded a grant from the William J. Hughes FAA Technical Center in October 1999 to develop and maintain a web site dealing with a wide variety of airport safety wildlife concerns. Initially, the web site enabled users to access related topics such as wildlife management (at/near airports), bird identification information, FAA wildlife management guidelines, education, pictures, current news, upcoming meetings and training, available jobs and discussion/forum sections. In April 2001, the web site was augmented with an on-line wildlife strike report (FAA Form 5200-7). Upon submittal on-line, “quick look” email notifications are sent to concerned government personnel. The distribution of these emails varies as to whether there was damage, human injuries/fatalities, and whether feather remains were collected and will be sent to the Smithsonian Institution for identification. In July 2002, a real-time on-line query system was incorporated to allow federal and local government agencies, airport and operator personnel, and USDA and airport wildlife biologists to access this database (which as of June 2005 contains 68,288 researched strike reports added to at a rate of approximately 500 strike reports/month) to formulate strategies to reduce the hazards wildlife present to aviation. To date (June 2005), over 15,000 on-line real-time queries were processed. In June 2004, ERAU was authorized to develop a graphical interface to this on-line query system. Current capabilities include mapping strikes (by species) on the US map, each of the contiguous 48 state maps (with AK and HI being added), and airport diagrams of the major metropolitan airports as well as the next 46 airports with the most reported strikes The latter capability depicts strikes by runway in plan as well as in elevation view. Currently under development is the ability to view time-sequenced strikes on the US map. This extensive graphical interface will give analysts the ability to view strike patterns with a wide variety of variables including species, seasons, migration patterns, etc. on US and state maps and airport diagrams.
Resumo:
The Canadian Wildlife Service has had twenty-five years experience with the problem caused by bird contacts with aircraft. I experienced my first bird strike, while flying as an observer on a waterfowl survey in August, 1940. Officers of the Service investigated bird problems at airports at Yarmouth, Nova Scotia, and Cartierville, Quebec, in the late 1940's. Those incidents involving gulls and low speed piston-engined aircraft caused minor damage to the aircraft but considerable disturbance to the operators. As aircraft speeds increased and airports became more numerous and busier the problem increased in extent and complexity. By 1960 it was apparent that the problem would grow worse and that work should be directed toward reducing the number of incidents. In 1960 an electra aircraft crashed at Boston, Massachusetts, killing 61 passengers. Starlings were involved in the engine malfunction which preceded the crash. In November, 1962 a viscount aircraft was damaged by collision with two swans between Baltimore and Washington and crashed with a loss of 17 lives. Those incidents focused attention on the bird hazard problem in the United States.