2 resultados para Carangiform fish body wave
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Degeneration of tendon tissue is a common cause of tendon dysfunction with the symptoms of repeated episodes of pain and palpable increase of tendon thickness. Tendon mechanical properties are directly related to its physiological composition and the structural organization of the interior collagen fibers which could be altered by tendon degeneration due to overuse or injury. Thus, measuring mechanical properties of tendon tissue may represent a quantitative measurement of pain, reduced function, and tissue health. Ultrasound elasticity imaging has been developed in the last two decades and has proved to be a promising tool for tissue elasticity imaging. To date, however, well established protocols of tendinopathy elasticity imaging for diagnosing tendon degeneration in early stages or late stages do not exist. This thesis describes the re-creation of one dynamic ultrasound elasticity imaging method and the development of an ultrasound transient shear wave elasticity imaging platform for tendon and other musculoskeletal tissue imaging. An experimental mechanical stage with proper supporting systems and accurate translating stages was designed and made. A variety of high-quality tissue-mimicking phantoms were made to simulate homogeneous and heterogeneous soft tissues as well as tendon tissues. A series of data acquisition and data processing programs were developed to collect the displacement data from the phantom and calculate the shear modulus and Young’s modulus of the target. The imaging platform was found to be capable of conducting comparative measurements of the elastic parameters of the phantoms and quantitatively mapping elasticity onto ultrasound B-Mode images. This suggests the system has great potential for not only benefiting individuals with tendinopathy with an earlier detection, intervention and better rehabilitation, but also for providing a medical tool for quantification of musculoskeletal tissue dysfunction in other regions of the body such as the shoulder, elbow and knee.
Resumo:
The effects of adding the nonlethal bird repellent methyl anthranilate (MA), at levels of 100 and 1000 mg/kg, to fish feed on the bioaccumulation and growth of juvenile (10 g) hybrid striped bass (Morone chrysops x M. saxatilis) and juvenile (1g) African cichlid fish Aulonocara jacobfreibergi were investigated under laboratory conditions. The bird repellent did not have any effect on the fish growth or survival over a period of 6 weeks. MA residues at low levels of 11.2 ± 2.6 mg/g were found in lipophilic tissues (liver) of MA-fed fish. Control fish, which had no MA added to their diet, had a much lower level of 0.6 ± 0.3 mg/g MA in their liver. Fish muscle was found to contain negligible MA residues, while the outer body surface mucus did not contain any MA. Following a 6-week depuration period, during which the previously MA-fed hybrid striped bass were fed a feed to which no MA was added, the levels of MA residues detected were reduced by one order of magnitude.