4 resultados para Cameras
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Because of their learned avoidance of humans and the dense cover provided by forested areas, observation of coyote activity is often very limited in the Southeast. In this study we used digital motion-sensor cameras to detect activity among coyote populations in various urban and rural habitats. Camera stations were placed adjacent to regenerating clear cuts, forest trails and roads, agriculture fields, residential areas, and within city parks to determine activity and presence of coyotes in these various areas. Cameras were successful in detecting coyotes in all study sites throughout the year. Coyotes appear to show no avoidance of camera stations. Cameras may be helpful in gathering general biological and activity information on coyote populations in an area.
Resumo:
The integration of CMOS cameras with embedded processors and wireless communication devices has enabled the development of distributed wireless vision systems. Wireless Vision Sensor Networks (WVSNs), which consist of wirelessly connected embedded systems with vision and sensing capabilities, provide wide variety of application areas that have not been possible to realize with the wall-powered vision systems with wired links or scalar-data based wireless sensor networks. In this paper, the design of a middleware for a wireless vision sensor node is presented for the realization of WVSNs. The implemented wireless vision sensor node is tested through a simple vision application to study and analyze its capabilities, and determine the challenges in distributed vision applications through a wireless network of low-power embedded devices. The results of this paper highlight the practical concerns for the development of efficient image processing and communication solutions for WVSNs and emphasize the need for cross-layer solutions that unify these two so-far-independent research areas.
Resumo:
Bovine tuberculosis (bovine TB), caused by Mycobacterium bovis, has reemerged in northern Michigan, USA, with detections in white-tailed deer (Odocoileus virginianus) in 1994 and in cattle in 1998. Since then, significant efforts have been directed toward reducing deer densities in the area in the hopes of reducing the bovine TB prevalence rate in deer and eliminating spillover of the disease into cattle. Despite the success of the efforts to reduce deer densities, additional cattle herds have become infected. Other mammals can be infected with M. bovis, and some carnivores and omnivores had been found to be infected with the disease in northern Michigan, USA. We conducted a multiyear surveillance effort to detect bovine TB in wild species of mammals in the Michigan, USA, outbreak area. From 2002 to 2004, tissue samples from 1,031 individual animals of 32 species were collected, processed, and cultured for M. bovis. Only 10 (1.0%) were culture-positive for M. bovis (five raccoons [Procyon lotor], four opossums [Didelphis virginiana], and one grey fox [Urocyon cinereoargenteus]). We also found two raccoons and four opossums to be positive for Mycobacterium avium. We collected 503 environmental samples from cattle farms recently identified as bovine TB positive; none yielded positive M. bovis culture results. Finally, we used infrared cameras to document wildlife use of four barns in the area. Many avian and mammalian species of wildlife were observed, with raccoons being the most commonly observed species. This surveillance study identified no new wildlife species that should be considered significant reservoirs of bovine TB in the outbreak area in northern Michigan, USA. However, the relatively high, apparent bovine TB prevalence rates in some carnivorous and omnivorous species, their relatively long life spans, and their frequent use of barns, suggests that removal of raccoons, opossums, foxes, and coyotes (Canis latrans) should be considered when a newly infected farm is depopulated of cattle.
Resumo:
Chronic wasting disease (CWD) has become a concern for wildlife managers and hunters across the United States. High prevalence of chronic wasting disease (CWD) in older male white-tailed deer (Odocoileus virginianus) suggests that sex-specific social behavior may contribute to the spread of the disease among males. Scraping is a marking behavior performed by male white-tailed deer during the rut in which a pawed depression and associated over-hanging branch are marked with saliva, glandular secretions, urine, and feces. We placed 71 and 35 motion-activated cameras on scrapes in DeSoto National Wildlife Refuge in western Nebraska and eastern Iowa from Oct. – Nov. 2005 and Sept. – Nov. 2006, respectively. We recorded 5009 encounters and 1830 direct interactions. We developed an ethogram of behaviors of interest at scrapes. We found that males interacted with scrapes more frequently than females (P < 0.001). Male interactions were more complex, with 69% consisting of ≥2 observed behaviors versus 25% and 13% for females and fawns. We identified individual male deer ≥2.5 years old and determined the minimum number of different scrapes individuals visited and the number of individuals that visit a single scrape. Individuals that appeared on camera ≥5 times visited a mean of 3.9 scrapes (range = 1-15) and traveled a mean minimum distance of 978 m between consecutive scrapes. A mean of 5.1 individuals visited a single scrape, and up to 43% of individuals returned to a scrape previously visited at least once. We modeled Risk Values based on frequency of occurrence, duration, and Threat Values of each behavior, for contacting and transmitting CWD prions at scrapes. Adult males had the highest total Risk Values for contacting CWD prions (114.1) and shedding prions (59.4). The “grasp-lick branch” behavior had the highest Risk Value for adult males for both contacting and transmitting prions. Our study reveals a sex specific social behavior in male white-tailed deer that has the potential to spread chronic wasting disease between adult males in the population.