3 resultados para COMPUTER SCIENCE MASTER THESIS

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hundreds of Terabytes of CMS (Compact Muon Solenoid) data are being accumulated for storage day by day at the University of Nebraska-Lincoln, which is one of the eight US CMS Tier-2 sites. Managing this data includes retaining useful CMS data sets and clearing storage space for newly arriving data by deleting less useful data sets. This is an important task that is currently being done manually and it requires a large amount of time. The overall objective of this study was to develop a methodology to help identify the data sets to be deleted when there is a requirement for storage space. CMS data is stored using HDFS (Hadoop Distributed File System). HDFS logs give information regarding file access operations. Hadoop MapReduce was used to feed information in these logs to Support Vector Machines (SVMs), a machine learning algorithm applicable to classification and regression which is used in this Thesis to develop a classifier. Time elapsed in data set classification by this method is dependent on the size of the input HDFS log file since the algorithmic complexities of Hadoop MapReduce algorithms here are O(n). The SVM methodology produces a list of data sets for deletion along with their respective sizes. This methodology was also compared with a heuristic called Retention Cost which was calculated using size of the data set and the time since its last access to help decide how useful a data set is. Accuracies of both were compared by calculating the percentage of data sets predicted for deletion which were accessed at a later instance of time. Our methodology using SVMs proved to be more accurate than using the Retention Cost heuristic. This methodology could be used to solve similar problems involving other large data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Software product line (SPL) engineering offers several advantages in the development of families of software products such as reduced costs, high quality and a short time to market. A software product line is a set of software intensive systems, each of which shares a common core set of functionalities, but also differs from the other products through customization tailored to fit the needs of individual groups of customers. The differences between products within the family are well-understood and organized into a feature model that represents the variability of the SPL. Products can then be built by generating and composing features described in the feature model. Testing of software product lines has become a bottleneck in the SPL development lifecycle, since many of the techniques used in their testing have been borrowed from traditional software testing and do not directly take advantage of the similarities between products. This limits the overall gains that can be achieved in SPL engineering. Recent work proposed by both industry and the research community for improving SPL testing has begun to consider this problem, but there is still a need for better testing techniques that are tailored to SPL development. In this thesis, I make two primary contributions to software product line testing. First I propose a new definition for testability of SPLs that is based on the ability to re-use test cases between products without a loss of fault detection effectiveness. I build on this idea to identify elements of the feature model that contribute positively and/or negatively towards SPL testability. Second, I provide a graph based testing approach called the FIG Basis Path method that selects products and features for testing based on a feature dependency graph. This method should increase our ability to re-use results of test cases across successive products in the family and reduce testing effort. I report the results of a case study involving several non-trivial SPLs and show that for these objects, the FIG Basis Path method is as effective as testing all products, but requires us to test no more than 24% of the products in the SPL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Observability measures the support of computer systems to accurately capture, analyze, and present (collectively observe) the internal information about the systems. Observability frameworks play important roles for program understanding, troubleshooting, performance diagnosis, and optimizations. However, traditional solutions are either expensive or coarse-grained, consequently compromising their utility in accommodating today’s increasingly complex software systems. New solutions are emerging for VM-based languages due to the full control language VMs have over program executions. Existing such solutions, nonetheless, still lack flexibility, have high overhead, or provide limited context information for developing powerful dynamic analyses. In this thesis, we present a VM-based infrastructure, called marker tracing framework (MTF), to address the deficiencies in the existing solutions for providing better observability for VM-based languages. MTF serves as a solid foundation for implementing fine-grained low-overhead program instrumentation. Specifically, MTF allows analysis clients to: 1) define custom events with rich semantics ; 2) specify precisely the program locations where the events should trigger; and 3) adaptively enable/disable the instrumentation at runtime. In addition, MTF-based analysis clients are more powerful by having access to all information available to the VM. To demonstrate the utility and effectiveness of MTF, we present two analysis clients: 1) dynamic typestate analysis with adaptive online program analysis (AOPA); and 2) selective probabilistic calling context analysis (SPCC). In addition, we evaluate the runtime performance of MTF and the typestate client with the DaCapo benchmarks. The results show that: 1) MTF has acceptable runtime overhead when tracing moderate numbers of marker events; and 2) AOPA is highly effective in reducing the event frequency for the dynamic typestate analysis; and 3) language VMs can be exploited to offer greater observability.