3 resultados para COMPLETE SPACELIKE HYPERSURFACES
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Let (R,m) be a local complete intersection, that is, a local ring whose m-adic completion is the quotient of a complete regular local ring by a regular sequence. Let M and N be finitely generated R-modules. This dissertation concerns the vanishing of Tor(M, N) and Ext(M, N). In this context, M satisfies Serre's condition (S_{n}) if and only if M is an nth syzygy. The complexity of M is the least nonnegative integer r such that the nth Betti number of M is bounded by a polynomial of degree r-1 for all sufficiently large n. We use this notion of Serre's condition and complexity to study the vanishing of Tor_{i}(M, N). In particular, building on results of C. Huneke, D. Jorgensen and R. Wiegand [32], and H. Dao [21], we obtain new results showing that good depth properties on the R-modules M, N and MtensorN force the vanishing of Tor_{i}(M, N) for all i>0. We give examples showing that our results are sharp. We also show that if R is a one-dimensional domain and M and MtensorHom(M,R) are torsion-free, then M is free if and only if M has complexity at most one. If R is a hypersurface and Ext^{i}(M, N) has finite length for all i>>0, then the Herbrand difference [18] is defined as length(Ext^{2n}(M, N))-(Ext^{2n-1}(M, N)) for some (equivalently, every) sufficiently large integer n. In joint work with Hailong Dao, we generalize and study the Herbrand difference. Using the Grothendieck group of finitely generated R-modules, we also examined the number of consecutive vanishing of Ext^{i}(M, N) needed to ensure that Ext^{i}(M, N) = 0 for all i>>0. Our results recover and improve on most of the known bounds in the literature, especially when R has dimension two.
Resumo:
Topics covered are: Cohen Macaulay modules, zero-dimensional rings, one-dimensional rings, hypersurfaces of finite Cohen-Macaulay type, complete and henselian rings, Krull-Remak-Schmidt, Canonical modules and duality, AR sequences and quivers, two-dimensional rings, ascent and descent of finite Cohen Macaulay type, bounded Cohen Macaulay type.
Resumo:
Fogging of ReJeX-iT7 TP-40 offers a very efficient method for the control and dispersal of nuisance birds from many diverse areas. The amount of the repellent is greatly reduced over any other control method. The method is direct and is independent of the activity of the birds. The applications with any fogger, thermal or mechanical, that can deliver droplets of less than 20 microns, can be manually or fully automated and pose only minimal risks to operators or animals. All birds that became a nuisance and safety problem in the hangars of TWA and AA at LaGuardia, and TWA warehouse at Newark Airport were successfully driven out by fogging ReJeX-iT7 TP-40 with a Curtis Dyna-Fog AGolden Eagle@ thermal fogger.