2 resultados para CG Series

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

20.00% 20.00%

Publicador:

Resumo:

"The problems that exist in the world today cannot be solved by the level of thinking we were at when we created them." That quote, attributed to Albert Einstein, epitomizes for me the importance of land grant universities in the 21 st century, and whenever I hear someone say that land grants are obsolete - which, occasionally, I do hear - I want to pull that quote out and say "here - read this." When all the problems in the world have been solved, then - and only then - will land grant universities be obsolete. Maybe. I'm not really willing to commit to the idea that the day of obsolete land grants ever will come, but if all the problems in the world are one day solved, then maybe - maybe - I'd consider it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Masticatory muscle contraction causes both jaw movement and tissue deformation during function. Natural chewing data from 25 adult miniature pigs were studied by means of time series analysis. The data set included simultaneous recordings of electromyography (EMG) from bilateral masseter (MA), zygomaticomandibularis (ZM) and lateral pterygoid muscles, bone surface strains from the left squamosal bone (SQ), condylar neck (CD) and mandibular corpus (MD), and linear deformation of the capsule of the jaw joint measured bilaterally using differential variable reluctance transducers. Pairwise comparisons were examined by calculating the cross-correlation functions. Jaw-adductor muscle activity of MA and ZM was found to be highly cross-correlated with CD and SQ strains and weakly with MD strain. No muscle’s activity was strongly linked to capsular deformation of the jaw joint, nor were bone strains and capsular deformation tightly linked. Homologous muscle pairs showed the greatest synchronization of signals, but the signals themselves were not significantly more correlated than those of non-homologous muscle pairs. These results suggested that bone strains and capsular deformation are driven by different mechanical regimes. Muscle contraction and ensuing reaction forces are probably responsible for bone strains, whereas capsular deformation is more likely a product of movement.