3 resultados para CANOPY COVER
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
This study analyzed spatial location patterns of Cercocarpus ledifolius Nutt. (curlleaf mountain mahogany) plants, classified as current-year seedling, established seedling, juvenile, and immature individuals, at a central Nevada study site. Most current-year seedlings were located in mahogany stands in which large, mature individuals had the greatest abundance. These stands had greater litter cover and a thicker layer of litter than areas with few current- year seedlings. Most established young Cercocarpus were located in adjacent Artemisia tridentata ssp. vaseyana (mountain big sagebrush) communities, or in infrequent canopy gaps between relatively few large, mature Cercocarpus. We discuss potential roles of plant litter, root growth characteristics, nurse plants, and herbivory in the establishment and renewal of Cercocarpus communities.
Resumo:
There are two general categories of furniture fabrics: those meant for use as slipcovers, and those for use as upholstery. Slipcovers are designed to fit snugly and yet be removable for cleaning. Upholstery fabrics are generally heavier; they are nailed or stapled directly to the furniture's frame or bonded to the padding. They are not removable. This publication is for persons considering an investment in upholstered furniture or upholstery fabric. It covers basic information on fabric components and construction to help the reader make a wise purchase.
Resumo:
This study is designed to compare the monthly continental snow cover and sea ice extent loss in the Arctic with regional atmospheric conditions including: mean sea level pressure, 925 hPa air temperature, and mean wind direction among others during the melt season (March-August) over the 29-year study period 1979-2007. Little research has gone into studying the concurrent variations in the annual loss of continental snow cover and sea ice extent across the land-ocean boundary, since these data are largely stored in incompatible formats. However, the analysis of these data, averaged spatially over three autonomous study regions located in Siberia, North America, and Western Russia, reveals a distinct difference in the response of snow and sea ice to the atmospheric forcing. On average, sea ice extent is lost earlier in the year, in May, than snow cover, in June, although Arctic sea ice is located farther north than continental snow in all three study regions. Once the loss of snow and ice extent begins, snow cover is completely removed sooner than sea ice extent, even though ice loss begins earlier in the melt season. Further, the analysis of the atmospheric conditions surrounding loss of snow and ice cover over the independent study regions indicates that conditions of cool temperatures with strong northeasterly winds in the later melt season months are effective at removing sea ice cover, likely through ice divergence, as are warmer temperatures via southerly winds directly forcing melt. The results of this study set the framework for further analysis of the direct influence of snow cover loss on later melt season sea ice extents and the predictability of snow and sea ice extent responses to modeled future climate conditions