7 resultados para Blue Crabs

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Examined digestive tracts of the red drum in Mississippi Sound contained mostly decapod crustaceans. Crustaceans accounted for 34 of 59 encountered taxa, more than reported from any other region. Nevertheless, the general diet for 104 fish with food contents out of the 107 examined is similar to that reported for red drum in several other studies from other areas. In addition to crustaceans, fishes followed by polychaetes occurred as the most important items (in 99, 43, and 15% of the drum with food, respectively). Blue crabs occurred in even more drum than the frequently encountered penaeid shrimps. Other commercial species were negligible in the diet. Sixteen large drum from Georgia beaches were also examined; unlike those from Mississippi, many of these contained echinoderms, but not polychaetes or penaeids. We suggest that the red drum’s migrations may be regulated by optimal abundance of specific types of dietary organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photo identification of individual blue whales during summer and autumn off the northwestern Isla de Chiloé, southern Chile, were collected from marine surveys conducted from 2004 to 2006. Re-sightings of individual whales both within and between years may provide evidence of residency and site fidelity by blue whales in the area. These records further document the importance of the northwestern Isla de Chiloé as a feeding area for blue whales. These records also highlight the necessity of further comparisons with photographic catalogues from other areas in southern Chile, off the northwestern coast of South America and the Pacific coast of Central America to better understand seasonal movements, distribution of individuals along the eastern South Pacific, and their wintering areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Blue whale locations in the Southern Hemisphere and northern Indian Ocean were obtained from catches (303 239), sightings (4383 records of ≥ 8058 whales), strandings (103), Discovery marks (2191) and recoveries (95), and acoustic recordings. 2. Sighting surveys included 7 480 450 km of effort plus 14 676 days with unmeasured effort. Groups usually consisted of solitary whales (65.2%) or pairs (24.6%); larger feeding aggregations of unassociated individuals were only rarely observed. Sighting rates (groups per 1000 km from many platform types) varied by four orders of magnitude and were lowest in the waters of Brazil, South Africa, the eastern tropical Pacific, Antarctica and South Georgia; higher in the Subantarctic and Peru; and highest around Indonesia, Sri Lanka, Chile, southern Australia and south of Madagascar. 3. Blue whales avoid the oligotrophic central gyres of the Indian, Pacific and Atlantic Oceans, but are more common where phytoplankton densities are high, and where there are dynamic oceanographic processes like upwelling and frontal meandering. 4. Compared with historical catches, the Antarctic (‘true’) subspecies is exceedingly rare and usually concentrated closer to the summer pack ice. In summer they are found throughout the Antarctic; in winter they migrate to southern Africa (although recent sightings there are rare) and to other northerly locations (based on acoustics), although some overwinter in the Antarctic. 5. Pygmy blue whales are found around the Indian Ocean and from southern Australia to New Zealand. At least four groupings are evident: northern Indian Ocean, from Madagascar to the Subantarctic, Indonesia to western and southern Australia, and from New Zealand northwards to the equator. Sighting rates are typically much higher than for Antarctic blue whales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recovery plans identify reasonable actions which are believed to be required to recover and/or protect endangered species. Plans are prepared by the National Marine Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service (FWS) and sometimes with the assistance of recovery teams, contractors, State agencies, and others. This plan was prepared by Randall R. Reeves, Phillip J. Clapham, Robert L. Brownell, Jr., and Gregory K. Silber for NMFS. Recovery plans do not necessarily represent the views nor the official positions or approvals of any individuals or agencies, other than those of NMFS, and they represent the views of NMFS only after they have been approved by the Assistant Administrator for Fisheries. Objectives will only be attained and funds expended contingent upon appropriations, priorities, and other budgetary constraints. Approved recovery plans are subject to modification as dictated by new findings, changes in species status, and the completion of recovery tasks described in the plan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on three types of skin lesions in a population of blue whales, Balaenoptera musculus, off the northwestern coast of Isla Grande de Chiloe, Chile. These lesions were: (1) cookie-cutter shark, Isistius brasilensis, bites, (2) vesicular or blister lesions, and (3) a tattoo-like skin disease. The presence of these lesions was determined by the examining photos collected in 2006 and 2007 for a blue whale photo-identification project. We examined 289 photographs of 68 individuals for lesions. The cookie-cutter shark lesions are common on these blue whales and similar to those reported from other species of cetaceans. Skin peeling or shedding was observed on some whales and is believed to be a normal condition. Based on the photographs examined to date the vesicular lesions are more common than the tattoo-like lesions. The tattoo-like skin lesions was observed just on a single whale in 2007. The blister lesions were common on whales in both 2006 and 2007. The presence of blister lesions in both years may indicate that this “disease” will be present in the population for a long time. It is unknown if these lesions contribute to mortality of blue whales frequenting Chilean waters, but the tattoo-like skin lesions if shown to be a pox virus could cause neonatal and calf mortality. Additional investigations are needed that, as a minimum, must include the histological and genetic examination of the two types of disease from live or dead whales, especially the tattoo-like skin lesions. Until this work is undertaken, it will be impossible to determine if these lesions pose a conservation risk to the blue whales off Chile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The seasonal distributions of humpback and blue whales (Megaptera novaeangliae and Balaenoptera musculus, respectively) in the North Atlantic Ocean are not fully understood. Although humpbacks have been studied intensively in nearshore or coastal feeding and breeding areas, their migratory movements between these areas have been largely inferred. Blue whales have only been studied intensively along the north shore of the Gulf of St. Lawrence, and their seasonal occurrence and movements elsewhere in the North Atlantic are poorly known. We investigated the historical seasonal distributions of these two species using sighting and catch data extracted from American 18th and 19th century whaling logbooks. These data suggest that humpback whales migrated seasonally from low-latitude calving/ breeding grounds over a protracted period, and that some of them traveled far offshore rather than following coastal routes. Also, at least some humpbacks apparently fed early in the summer west of the Mid-Atlantic Ridge, well south of their known present-day feeding grounds. In assessing the present status of the North Atlantic humpback population, it will be important to determine whether such offshore feeding does in fact occur. Blue whales were present across the southern half of the North Atlantic during the autumn and winter months, and farther north in spring and summer, but we had too few data points to support inferences about these whales’ migratory timing and routes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this presentation is to gain new perspectives on pest control and related phenomena. Some will call it “blue sky.” I would claim it informal futuristics. Systems men call such efforts feedforward; others grandify it with “prognostics.” Some say prognostics is one of the leading challenges of the day. We must anticipate future developments and imagine or invent new alternatives as a background for rational choice. The activity can influence today’s decisions, modify our concepts of risks and probable payoffs, and can help those of us who ask: “What am I really doing; what should I be doing?”