2 resultados para Bisphenol A-Glycidyl Methacrylate
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
The reaction of living anionic polymers with 2,2,5,5-tetramethyl-1-(3-bromopropyl)-1-aza-2,5- disilacyclopentane (1) was investigated using coupled thin layer chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Structures of byproducts as well as the major product were determined. The anionic initiator having a protected primary amine functional group, 2,2,5,5-tetramethyl- 1-(3-lithiopropyl)-1-aza-2,5-disilacyclopentane (2), was synthesized using all-glass high-vacuum techniques, which allows the long-term stability of this initiator to be maintained. The use of 2 in the preparation of well-defined aliphatic primary amine R-end-functionalized polystyrene and poly(methyl methacrylate) was investigated. Primary amino R-end-functionalized poly(methyl methacrylate) can be obtained near-quantitatively by reacting 2 with 1,1-diphenylethylene in tetrahydrofuran at room temperature prior to polymerizing methyl methacrylate at -78 °C. When 2 is used to initiate styrene at room temperature in benzene, an additive such as N,N,N',N'- tetramethylethylenediamine is necessary to activate the polymerization. However, although the resulting polymers have narrow molecular weight distributions and well-controlled molecular weights, our mass spectra data suggest that the yield of primary amine α-end-functionalized polystyrene from these syntheses is very low. The majority of the products are methyl α-end-functionalized polystyrene.
Resumo:
In a previous article,1 the development and molecular characterization of three polyesters from N-carbobenzyloxy-L-glutamic acid (ZGluOH) were reported. The polymers were a linear, heterochain polyester (ZGluOH and ethylene glycol), a crosslinked heterochain polyester (ZGluOH and diglycidyl ether of 1,4-butanediol), and a crosslinked, heterochain aromatic polyester (ZGluOH and diglycidyl ether of bisphenol A). In this manuscript, results of biodegradation studies are reported. The three polymers hydrolyzed to low molecular weight oligomers similar to the monomers with lipase. When exposed to a mixed culture of micro-organisms, the first two resins degraded to biomass and respiratory gases. The crosslinked heterochain aromatic polyester resisted microbial degradation.