2 resultados para Biomedical Applications X
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Surface modification of carbon nanotubes (CNTs) through covalent functionalization is vital for the development of high-performance composite materials, chemosensors, nanoelectronics, photovoltaic devices, as well as for a range of biomedical applications. Several methods have been developed to functionalize CNTs. The introduction of acid groups by acid digestion disrupts the structural integrity of CNTs. Apart from shortening the tubes, oxidatively generated acid groups are inhomogenously located at the tips of broken CNTs and, hence, functionalization using acid groups as precursors does not give a statistical distribution of functional groups throughout the surface of the CNTs.
Resumo:
As the area of nanotechnology continues to grow, the development of new nanomaterials with interesting physical and electronic properties and improved characterization techniques are several areas of research that will be remain vital for continued improvement of devices and the understanding in nanoscale phenomenon. In this dissertation, the chemical vapor deposition synthesis of rare earth (RE) compounds is described in detail. In general, the procedure involves the vaporization of a REClx (RE = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho) in the presence of hydride phase precursors such as decaborane and ammonia at high temperatures and low pressures. The vapor-liquid-solid mechanism was used in combination with the chemical vapor deposition process to synthesize single crystalline rare earth hexaboride nanostructures. The crystallographic orientation of as-synthesized rare earth hexaboride nanostructures and gadolinium nitride thin films was controlled by judicious choice of specific growth substrates and modeled by analyzing x-ray diffraction powder patterns and crystallographic models. The rare earth hexaboride nanostructures were then implemented into two existing technologies to enhance their characterization capabilities. First, the rare earth hexaboride nanowires were used as a test material for the development of a TEM based local electrode atom probe tomography (LEAP) technique. This technique provided some of the first quantitative compositional information of the rare earth hexaboride systems. Second, due to the rigidity and excellent conductivity of the rare earth hexaborides, nanostructures were grown onto tungsten wires for the development of robust, oxidation resistant nanomanipulator electronic probes for semiconductor device failure analysis.