4 resultados para Biochemical and Biomolecular Engineering
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Fibrous materials have morphological similarities to natural cartilage extracellular matrix and have been considered as candidate for bone tissue engineering scaffolds. In this study, we have evaluated a novel electrospun chitosan mat composed of oriented sub-micron fibers for its tensile property and biocompatibility with chondrocytes (cell attachment, proliferation and viability). Scanning electronic microscope images showed the fibers in the electrospun chitosan mats were indeed aligned and there was a slight cross-linking between the parent fibers. The electrospun mats have significantly higher elastic modulus (2.25 MPa) than the cast films (1.19 MPa). Viability of cells on the electrospun mat was 69% of the cells on tissue-culture polystyrene (TCP control) after three days in culture, which was slightly higher than that on the cast films (63% of the TCP control). Cells on the electrospun mat grew slowly the first week but the growth rate increased after that. By day 10, cell number on the electrospun mat was almost 82% that of TCP control, which was higher than that of cast films (56% of TCP). The electrospun chitosan mats have a higher Young’s modulus (P <0.01) than cast films and provide good chondrocyte biocompatibility. The electrospun chitosan mats, thus, have the potential to be further processed into three-dimensional scaffolds for cartilage tissue repair.
Resumo:
In a previous article,1 the development and molecular characterization of three polyesters from N-carbobenzyloxy-L-glutamic acid (ZGluOH) were reported. The polymers were a linear, heterochain polyester (ZGluOH and ethylene glycol), a crosslinked heterochain polyester (ZGluOH and diglycidyl ether of 1,4-butanediol), and a crosslinked, heterochain aromatic polyester (ZGluOH and diglycidyl ether of bisphenol A). In this manuscript, results of biodegradation studies are reported. The three polymers hydrolyzed to low molecular weight oligomers similar to the monomers with lipase. When exposed to a mixed culture of micro-organisms, the first two resins degraded to biomass and respiratory gases. The crosslinked heterochain aromatic polyester resisted microbial degradation.
Resumo:
Trauma deaths are a result of hemorrhage in 37% of civilians and 47% military personnel and are the primary cause of death for individuals under 44 years of age. Current techniques used to treat hemorrhage are inadequate for severe bleeding. Preliminary research indicates that fibrin sealants (FS) alone or in combination with a dressing may be more effective; however, it has not been economically feasible for widespread use because of prohibitive costs related to procuring the proteins. To meet future demands for hemostatic therapies, FS will likely include recombinant human fibrinogen (rFI) and recombinant human Factor XIII (rFXIII). The underlying hypothesis of the research presented in this dissertation is that a liquid fibrin sealant (LFS) composed of recombinant FI, FXIII and FIIa in optimized proportions can assist hemostasis in the presence and absence of a bioresorbable bandage while using considerably fewer biologics than commercial products currently available. This dissertation characterized rFI produced in the milk of transgenic cows, plasma-derived thrombin (pdFIIa) activated by sodium citrate and rFXIIIa expressed in genetically engineered Pichia pastoris with respect to their capacity to serve as components in a LFS. The ratios of these factors were optimized to yield a LFS with a rapid clot formation rate and high viscoelastic strength. This optimized LFS was preliminarily tested ex vivo and in vivo. The clotting kinetics and viscoelastic strength of our optimized LFS was equivalent to those of a commercially available LFS; however, it uses approximately 75% less fibrinogen and thrombin. Our optimal LFS successfully achieved hemostasis in a significant number of the wounds that included extensive tissue and vascular damage. LFS applied without the assistance of a dressing was able to stop bleeding of oozing wounds or those with small vessels; however, a scaffold was needed when wounds contained large vasculature.
Resumo:
No Abstract