2 resultados para Bacterial pollution of water
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Water has been and will continue to be a contentious issue for policy makers, landowners, municipalities, environmentalists, and citizens who feels they have an undeniable right to clean water delivered to their homes (at least in the United States). With so many groups coming into conflict over what, at least in the West and the Great Plains, continues to be a diminishing resource per capita, an understanding of the economic value of this resource is critical. It is important to note, as Robert Young does throughout his book, that the true economic value of water goes beyond what we pay our city services each month, or the cost to farmers or ranchers for pumping and distributing that water on their land. The value of water must take into account the value of the competing uses which are sometimes difficult to price.
Resumo:
Abstract Rain gardens are an important tool in reducing the amount of stormwater runoff and accompanying pollutants from entering the city’s streams and lakes, and reducing their water quality. This thesis project analyzed the number of rain gardens installed through the City of Lincoln Nebraska Watershed Management’s Rain Garden Water Quality Project in distance intervals of one-eighth mile from streams and lakes. This data shows the distribution of these rain gardens in relation to streams and lakes and attempts to determine if proximity to streams and lakes is a factor in homeowners installing rain gardens. ArcGIS was used to create a map with layers to determine the number of houses with rain gardens in 1/8 mile distance increments from the city’s streams and lakes and their distances from a stream or lake. The total area, number of house parcels, and the type and location of each parcel type were also determined for comparison between the distance interval increments. The study revealed that fifty-eight percent of rain gardens were installed within a quarter mile of a stream or lake (an area covering 60% of the city and including 58.5% of the city’s house parcels), and that eighty percent of rain gardens were installed within three-eighth mile of streams or lakes (an area covering 75% of the city and 78.5% of the city’s house parcels). All parcels in the city are within 1 mile of a stream or lake. Alone the number of project houses per distance intervals suggested that proximity to a stream or lake was a factor in people’s decisions to install rain gardens. However, when compared to the number of house parcels available, proximity disappears as a factor in project participation.