1 resultado para Architecture and Complexity
em DigitalCommons@University of Nebraska - Lincoln
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (10)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (7)
- Aston University Research Archive (24)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (16)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (40)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (10)
- CentAUR: Central Archive University of Reading - UK (44)
- Central European University - Research Support Scheme (1)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (3)
- Coffee Science - Universidade Federal de Lavras (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (12)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (4)
- Digital Commons - Michigan Tech (5)
- Digital Commons @ DU | University of Denver Research (120)
- Digital Commons at Florida International University (19)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (18)
- DRUM (Digital Repository at the University of Maryland) (7)
- Duke University (2)
- Ecology and Society (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (5)
- Helvia: Repositorio Institucional de la Universidad de Córdoba (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (2)
- Instituto Politécnico do Porto, Portugal (12)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (8)
- Nottingham eTheses (3)
- Open University Netherlands (1)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (30)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (15)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (13)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (53)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (5)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universidade Técnica de Lisboa (1)
- Universita di Parma (3)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (33)
- Université de Montréal (1)
- Université de Montréal, Canada (12)
- University of Michigan (47)
- University of Queensland eSpace - Australia (60)
- University of Southampton, United Kingdom (1)
- University of Washington (3)
- WestminsterResearch - UK (65)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Let (R,m) be a local complete intersection, that is, a local ring whose m-adic completion is the quotient of a complete regular local ring by a regular sequence. Let M and N be finitely generated R-modules. This dissertation concerns the vanishing of Tor(M, N) and Ext(M, N). In this context, M satisfies Serre's condition (S_{n}) if and only if M is an nth syzygy. The complexity of M is the least nonnegative integer r such that the nth Betti number of M is bounded by a polynomial of degree r-1 for all sufficiently large n. We use this notion of Serre's condition and complexity to study the vanishing of Tor_{i}(M, N). In particular, building on results of C. Huneke, D. Jorgensen and R. Wiegand [32], and H. Dao [21], we obtain new results showing that good depth properties on the R-modules M, N and MtensorN force the vanishing of Tor_{i}(M, N) for all i>0. We give examples showing that our results are sharp. We also show that if R is a one-dimensional domain and M and MtensorHom(M,R) are torsion-free, then M is free if and only if M has complexity at most one. If R is a hypersurface and Ext^{i}(M, N) has finite length for all i>>0, then the Herbrand difference [18] is defined as length(Ext^{2n}(M, N))-(Ext^{2n-1}(M, N)) for some (equivalently, every) sufficiently large integer n. In joint work with Hailong Dao, we generalize and study the Herbrand difference. Using the Grothendieck group of finitely generated R-modules, we also examined the number of consecutive vanishing of Ext^{i}(M, N) needed to ensure that Ext^{i}(M, N) = 0 for all i>>0. Our results recover and improve on most of the known bounds in the literature, especially when R has dimension two.