2 resultados para Application-layer

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Web content hosting, in which a Web server stores and provides Web access to documents for different customers, is becoming increasingly common. For example, a web server can host webpages for several different companies and individuals. Traditionally, Web Service Providers (WSPs) provide all customers with the same level of performance (best-effort service). Most service differentiation has been in the pricing structure (individual vs. business rates) or the connectivity type (dial-up access vs. leased line, etc.). This report presents DiffServer, a program that implements two simple, server-side, application-level mechanisms (server-centric and client-centric) to provide different levels of web service. The results of the experiments show that there is not much overhead due to the addition of this additional layer of abstraction between the client and the Apache web server under light load conditions. Also, the average waiting time for high priority requests decreases significantly after they are assigned priorities as compared to a FIFO approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a cross-layer solution for packet size optimization in wireless sensor networks (WSN) is introduced such that the effects of multi-hop routing, the broadcast nature of the physical wireless channel, and the effects of error control techniques are captured. A key result of this paper is that contrary to the conventional wireless networks, in wireless sensor networks, longer packets reduce the collision probability. Consequently, an optimization solution is formalized by using three different objective functions, i.e., packet throughput, energy consumption, and resource utilization. Furthermore, the effects of end-to-end latency and reliability constraints are investigated that may be required by a particular application. As a result, a generic, cross-layer optimization framework is developed to determine the optimal packet size in WSN. This framework is further extended to determine the optimal packet size in underwater and underground sensor networks. From this framework, the optimal packet sizes under various network parameters are determined.