4 resultados para Advanced Application of Geographical Information Systems
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
The ability to utilize information systems (IS) effectively is becoming a necessity for business professionals. However, individuals differ in their abilities to use IS effectively, with some achieving exceptional performance in IS use and others being unable to do so. Therefore, developing a set of skills and attributes to achieve IS user competency, or the ability to realize the fullest potential and the greatest performance from IS use, is important. Various constructs have been identified in the literature to describe IS users with regard to their intentions to use IS and their frequency of IS usage, but studies to describe the relevant characteristics associated with highly competent IS users, or those who have achieved IS user competency, are lacking. This research develops a model of IS user competency by using the Repertory Grid Technique to identify a broad set of characteristics of highly competent IS users. A qualitative analysis was carried out to identify categories and sub-categories of these characteristics. Then, based on the findings, a subset of the model of IS user competency focusing on the IS-specific factors – domain knowledge of and skills in IS, willingness to try and to explore IS, and perception of IS value – was developed and validated using the survey approach. The survey findings suggest that all three factors are relevant and important to IS user competency, with willingness to try and to explore IS being the most significant factor. This research generates a rich set of factors explaining IS user competency, such as perception of IS value. The results not only highlight characteristics that can be fostered in IS users to improve their performance with IS use, but also present research opportunities for IS training and potential hiring criteria for IS users in organizations.
Resumo:
Robots are needed to perform important field tasks such as hazardous material clean-up, nuclear site inspection, and space exploration. Unfortunately their use is not widespread due to their long development times and high costs. To make them practical, a modular design approach is proposed. Prefabricated modules are rapidly assembled to give a low-cost system for a specific task. This paper described the modular design problem for field robots and the application of a hierarchical selection process to solve this problem. Theoretical analysis and an example case study are presented. The theoretical analysis of the modular design problem revealed the large size of the search space. It showed the advantages of approaching the design on various levels. The hierarchical selection process applies physical rules to reduce the search space to a computationally feasible size and a genetic algorithm performs the final search in a greatly reduced space. This process is based on the observation that simple physically based rules can eliminate large sections of the design space to greatly simplify the search. The design process is applied to a duct inspection task. Five candidate robots were developed. Two of these robots are evaluated using detailed physical simulation. It is shown that the more obvious solution is not able to complete the task, while the non-obvious asymmetric design develop by the process is successful.
Resumo:
This study compares information-seeking behavior of Bachelor of Science and Master of Science students in the fields of agricultural extension and education. The authors surveyed Iranian students in departments of agricultural extension and education at four universities in Tehran, Shiraz, Mollasani, and Kermanshah. This study focused on three aspects: (1) comparison of amounts of information-seeking behavior between Bachelor of Science and Master of Science agricultural extension and education students; (2) comparison of information-seeking behavior varieties in Bachelor of Science and Master of Science agricultural extension and education students; (3) Comparison of amounts of available information resources at four universities and its effectiveness on students' information-seeking behavior; and (4) comparison of research and educational outputs in Bachelor of Science and Master of Science students. Scale free technique, division by mean method, principal components analysis technique, Delphi method, t-test, correlation and regression tools were used for data analysis. This study revealed that Bachelor of Science students' information-seeking behavior is for improving educational output, but Master of Science students' information-seeking behavior is for promoting research output. Among varieties of Internet searching skills, library searching skills, and awareness of library information-seeking methods with students' information-seeking behavior, there are not significant differences between two groups of students.