2 resultados para ANTICOAGULANT PATHWAYS
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
The cAMP signal transduction pathway controls a wide variety of processes in fungi. For example, considerable progress has been made in describing the involvement of cAMP pathway components in the control of morphogenesis in Saccharomyces cerevisiae, Ustilago maydis, and Magnaporthe grisea. These morphological processes include the establishment of filamentous growth in S. cerevisiae and U. maydis, and the differentiation of an appressorial infection structure in M. grisea. The discovery that appressorium formation requires cAMP signaling provides an immediate connection to fungal virulence. This connection may have broader implications among fungal pathogens because recent work indicates that cAMP signaling controls the expression of virulence traits in the human pathogen Cryptococcus neoformans. In this fungus, cAMP also influences mating, as has been found for Schizosaccharomyces pombe and as may occur in U. maydis. Finally, cAMP and mitogen- activated protein kinase pathways appear to function coordinately to control the response of certain fungi, e.g., Saccharomyces cerevisiae and Schizosaccharomyces pombe, to environmental stress. There are clues that interconnections between these pathways may be common in the control of many fungal processes.
Resumo:
ABSTRACT: Preliminary studies completed on commensal rodents with the new anticoagulant rodenticide difethialone showed very good efficacy, such that 25 ppm baits could be used effectively. New test results presented in this publication confirm the activity as shown under laboratory conditions in choice tests, which represent more severe conditions, as well as its effectiveness against rodents that are resistant and non-resistant to warfarin. In tests where the palatability was only fair the chemical activity resulted in excellent mortality. In a field test against a large population of Mus musculus the results proved very satisfactory. Difethialone is toxic to birds and fish. However, it seems to be better tolerated by dogs and pigs, animals that are frequently on the list of accidental poisonings. Difethialone is stored over a prolonged period in the liver but the risk to non-target species consuming rodents having ingested the compound does not seem to be high. For reasons attributed to the mode of action, difethialone must be handled with precautions as other anticoagulants for which Vitamin Kj is the antidote. In the event of an accidental poisoning, an antidotal therapy plan is proposed. The lower levels of active ingredient in finished baits (25 ppm) should pose a low risk to non-target species.