3 resultados para AMENDED SOILS
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
The agricultural lands of this country are its greatest natural resource. History points out that nations with vast areas of good farm land are most likely to prosper and survive over long periods of time. Local communities, too, prosper and flourish in proportion to the productiveness of the surrounding land. Schools, social life, and business develop best in areas where the land is productive and properly managed and conserved. Nebraska, in common with other states, has suffered by the depletion of soil fertility. The reduction in acres in legumes and grasses, and the deplation of the organic matter in the surface soils, has likewise had its effect on the run-off of precipitation, soil blowing, and damage from drouth. In order to know what elements of fertility may become deficient and how soil fertility may be restored and maintained, we should understand the composition, character, and management of soils. In the following pages, some fundamentals of soil feritlity are given, followed later by a discussion of practical soil-management practices.
Resumo:
When I teach geoarchaeology, I tell students on the first day of class that "soils are the canvas for much of the archaeological record." Just as an artist's canvas holds and affects the paint, soils hold archaeological materials, and soil-forming processes strongly influence the preservation and spatial pattern of cultural deposits. Given this close relationship between soils and the material remains of humans, we have long needed a treatise that addresses all aspects of soils from an archaeological perspective. Vance Holliday's latest book, Soils in Archaeological Research, does this and more.
Resumo:
Strains of Lysobacter enzymogenes, a bacterial species with biocontrol activity, have been detected via 16S rDNA sequences in soil in different parts of the world. In most instances, however, their occurrence could not be confirmed by isolation, presumably because the species occurred in low numbers relative to faster-growing species of Bacillus or Pseudomonas. In this study, we developed DNA-based detection and enrichment culturing methods for Lysobacter spp. and L. enzymogenes specifically. In the DNA-based method, a region of 16S rDNA conserved among Lysobacter spp. (L4: GAG CCG ACG TCG GAT TAG CTA GTT), was used as the forward primer in PCR amplification. When L4 and universal bacterial primer 1525R were used to amplify DNA from various bacterial species, an 1100-bp product was found in Lysobacter spp. exclusively. The enrichment culturing method involved culturing soils for 3 days in a chitin-containing broth amended with antibiotics. Bacterial strains in the enrichment culture were isolated on yeast-cell agar and then identified by 16S rDNA sequence analysis. A strain of L. enzymogenes added to soils was detected at populations as low as 102 and 104 CFU/g soil by PCR amplification and enrichment culturing, respectively. In a survey of 58 soil samples, Lysobacter was detected in 41 samples by PCR and enrichment culture, out of which 6 yielded strains of Lysobacter spp. by enrichment culture. Among isolated strains, all were identified to be L. enzymogenes, with the exception of a strain of L. antibioticus. Although neither method alone is completely effective at detecting L. enzymogenes, they are complementary when used together and may provide new information on the spatial distribution of the species in soil.