15 resultados para ACRE
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
The new farm bill enacted by Congress in June 2008 includes a new revenue-based safety-net, the Average Crop Revenue Election (ACRE) Program, that will be available to producers beginning with the 2009 crop year. This analysis of the mechanics of ACRE and the relevant yields and prices to include in ACRE can help producers assess whether ACRE will be a good choice for this crop year and beyond.
Resumo:
In 2009, agricultural producers participating in federal farm programs had to decide between staying in the existing Direct and Counter-Cyclical Program (DCP), and the new Average Crop Revenue Election Program (ACRE). If producers chose to keep the DCP, their farm income safety net is strictly tied to crop prices, with a combination of marketing loans, counter-cyclical payments and direct payments. If producers chose the new ACRE program, they changed their farm income safety net to a combination of price and revenue. The new ACRE component is based on revenue and replaces the counter-cyclical payment. The other parts of the safety net for ACRE participants remain tied to price, albeit at lower levels (direct payments reduced 20 percent, marketing loan rates reduced 30 percent).
Resumo:
The new farm bill enacted by Congress in June 2008 includes a new revenue-based safety net, the Average Crop Revenue Election (ACRE) Program, that is available to producers beginning with the 2009 crop year. While final details and implementation of the program is yet to be announced by the USDA Farm Service Agency (FSA), an analysis of the mechanics of ACRE and the relevant yields and prices to include in ACRE can help producers assess whether ACRE will be a good choice for this crop year and beyond.
Resumo:
The initial sign-up period for 2009 farm commodity programs and the choice between the new ACRE (Average Crop Revenue Election) program and the existing DCP (Direct and Counter-Cyclical Payment) program is quickly winding down. But as the current August 14 deadline approaches, producers know more and more about the potential safety net provided under the ACRE program, and have a better opportunity to analyze the economics of choosing ACRE versus the DCP program before visiting their USDA Farm Service Agency (FSA) office.
Resumo:
Corn is Nebraska's most important crop. Of the nearly 19 million acres under cultivation in the state, over 10 million acres or more than 50 percent is normally planted to corn. This is three times the acreage of wheat, four times that of oats, and ten times that of barley. The 10-year average acre yield of corn for this state is 25.8 bushels compared with 26.9 bushels for the entire United States. Nebraska, with an average annual crop of approximately 258 million bushels, usually ranks third among all states in the total production of corn, being exceeded by Iowa and Illinois. This 1933 extension circular discusses the importance of corn, seed, varieties of corn, freezing injury, testing seed corn, hybrid corn, soil fertility and rotation, cultural practices, harvesting and storing corn, power machinery in relation to costs in corn production, corn diseases and insects, and utilization of corn.
Resumo:
Irrigation is vital to the economic activity of the west-central Great Plains. The crops grown, the distribution of center-pivot irrigation systems, and the basic transportation infrastructure is the same in northwest Kansas, northeast Colorado, and southwest Nebraska. But buyers of agricultural land face a different price for irrigated cropland in each of the states, even when the production characteristics of the land are similar. After accounting for factors like productivity and local property tax differences, we argue that it is the difference in water marketing rights between the three states that explains the price difference. The link between land values and water marketing rights is statistically developed by using Ordinary Least Squared (OLS) regression techniques. After adjusting for differences in property taxes, the analysis reveals that the implicit value of full water-marketing rights in the region is approximately $1,026 per acre. This valuation is within the range of estimates provided by other comparable studies across the country.
Resumo:
We begin the 2001 Master Conservationist program with honorees in production agriculture from District A which includes the Panhandle of Nebraska. I would like to ask Leon and Cheryl Burkhart-Kriesel (Kresel) of Gurley who are unable to be present. They operated the family farm in partnership with Fred and Viola Kriesel until 1984 when Leon and Cheryl become sole owners/operators. The Kriesels produce certified wheat, millet, oats, and barley seed on 3200 dryland acres that are owned, rented, or contracted. Since 1984, 45,000 feet of terraces have been installed. Their holistic conservation plan also includes over 57,000 feet of windbreaks of mixed evergreen and broadleaf trees and shrubs. This mixture of plant species is unique in the Panhandle. They built an earthen dam with 11 acre-feet of permanent storage and 70.5 acre-feet of detention storage. Results include reduced soil erosion by wind and water, and increased productivity and wildlife populations. Local and international groups tour the farm. Congratulations to the Kriesels.
Resumo:
What a tremendous gift “Pete” and Abbie Gudmundsen gave to the University, to the people who live throughout their beloved Sandhills, and to the entire State of Nebraska when they donated their 12,817 acre ranch, the Rafter C, to the University of Nebraska Foundation in 1978. And what tremendous work our faculty and staff have accomplished here over the past 20 years. UNL faculty and staff research and educational efforts have truly made this ranch the “Gudmundsen Sandhills Laboratory.”
Resumo:
We begin our Master Conservationist recognition in Production Agriculture with the Buskirk Family of Hemingford in the Panhandle. Will David and Toni Buskirk, Dean and Sonya Buskirk, Chad Buskirk, and Dustin and Shelly McConville, please come forward? They started with a half-section which has grown to 2,855 acres, as well as a tree-planting business. The family formed a partnership in 1995 and named it “Trees are Us” in 1998. They have used no-till farming on 1,000 acres of cropland since 1980 and planted over 165,000 trees. A low-pressure irrigation system saves about 400 acre inches of water every growing season. They built their own no-till tree planter for differing soil conditions and a machine to install biodegradable weed barriers. Their enthusiasm for trees is contagious as they visit with others and perform volunteer work in the area. Their unique tree planting equipment is made available nationwide, which results in the planting of more than 2 million trees in over 10 states annually. Congrats to the Buskirks.
Resumo:
This extension circular is a slide rule used to help a producer calculate the row spacing, seed population, and estimated percentage of emergence of sugarbeet. A producer can also use this slide rule to find the plant population from plants/100 feet of row at 22" and 30" row spacings.
Resumo:
Last year when I had the opportunity to speak at the 2002 Gudmundsen Sandhills Laboratory Open House I noted the tremendous gift Pete and Abbie Gudmundsen gave the university, the people who live throughout their beloved Sandhills, and, indeed, the entire state of Nebraska when they donated their almost 13,000 acre ranch, the Rafter C, to the University of Nebraska Foundation back in 1978.
Resumo:
After several years of successively rising land values and cash rents, Nebraska’s farmland markets throttled back during 2008. Preliminary results from the University of Nebraska-Lincoln’s 2009 Nebraska Farm Real Estate Market Survey show a clear picture of the market mood turning very cautious in response to the U.S. and global economic downturns. As of February 1, 2009, the weighted average value of Nebraska farmland was $1,424 per acre, identical to the year-earlier level (Figure 1 and Table 1 at end of article). Likewise, estimated 2009 cash rents are stable to slightly down from 2008 levels throughout most of the state.
Resumo:
The problem of rats in our Hawaiian sugar cane fields has been with us for a long time. Early records tell of heavy damage at various times on all the islands where sugar cane is grown. Many methods were tried to control these rats. Trapping was once used as a control measure, a bounty was used for a time, gangs of dogs were trained to catch the rats as the cane was harvested. Many kinds of baits and poisons were used. All of these methods were of some value as long as labor was cheap. Our present day problem started when the labor costs started up and the sugar industry shifted to long cropping. Until World War II cane was an annual crop. After the war it was shifted to a two year crop, three years in some places. Depending on variety, location, and soil we raise 90 to 130 tons of sugar cane per acre, which produces 7 to 15 tons of sugar per acre for a two year crop. This sugar brings about $135 dollars per ton. This tonnage of cane is a thick tangle of vegetation. The cane grows erect for almost a year, as it continues to grow it bends over at the base. This allows the stalk to rest on the ground or on other stalks of cane as it continues to grow. These stalks form a tangled mat of stalks and dead leaves that may be two feet thick at the time of harvest. At the same time the leafy growing portion of the stalk will be sticking up out of the mat of cane ten feet in the air. Some of these individual stalks may be 30 feet long and still growing at the time of harvest. All this makes it very hard to get through a cane field as it is one long, prolonged stumble over and through the cane. It is in this mat of cane that our three species of rats live. Two species are familiar to most people in the pest control field. Rattus norvegicus and Rattus rattus. In the latter species we include both the black rat and the alexandrine rats, their habits seem to be the same in Hawaii. Our third rat is the Polynesian rat, Rattus exlans, locally called the Hawaiian rat. This is a small rat, the average length head to tip of tail is nine inches and the average body weight is 65 grams. It has dark brownish fur like the alexandrine rats, and a grey belly. It is found in Indonesia, on most of the islands of Oceania and in New Zealand. All three rats live in our cane fields and the brushy and forested portions of our islands. The norway and alexandrine rats are found in and around the villages and farms, the Polynesian rat is only found in the fields and waste areas. The actual amount of damage done by rats is small, but destruction they cause is large. The rats gnaw through the rind of the cane stalk and eat the soft juicy and sweet tissues inside. They will hollow out one to several nodes per stalk attacked. The effect to the cane stalk is like ringing a tree. After this attack the stalk above the chewed portion usually dies, and sometimes the lower portion too. If the rat does not eat through the stalk the cane stalk could go on living and producing sugar at a reduced rate. Generally an injured stalk does not last long. Disease and souring organisms get in the injury and kill the stalk. And if this isn't enough, some insects are attracted to the injured stalk and will sometimes bore in and kill it. An injured stalk of cane doesn't have much of a chance. A rat may only gnaw out six inches of a 30 foot stalk and the whole stalk will die. If the rat only destroyed what he ate we could ignore them but they cause the death of too much cane. This dead, dying, and souring cane cause several direct and indirect tosses. First we lose the sugar that the cane would have produced. We harvest all of our cane mechanically so we haul the dead and souring cane to the mill where we have to grind it with our good cane and the bad cane reduces the purity of the sugar juices we squeeze from the cane. Rats reduce our income and run up our overhead.
Resumo:
In Arkansas, blackbirds are responsible for appreciable damage to rice, grain sorghum, oats, wheat, rye, and corn. By far, the greatest damage is to rice. As is shown in the following table, the losses to rice producers amounted to an estimated $3,049,055 in 1968, the last year that a survey was made. Nearly two-thirds (63%) of this loss was to standing rice destroyed and to the cost of bird control measure in standing rice. The remaining losses ($2,140,320 ) are to seeding or to efforts to control bird depredations to new seeding, (see Table 1). Blackbird damage to grain sorghum and corn was mostly to standing grain; that to oats, wheat and rye, to seeding, although there is occasional damage to standing grain. Additional problems are caused by blackbirds in feed lots. The total losses to Arkansas agricultural producers due to blackbirds in 1968 was about $3,500,000. Bird damage in a specific locality and on specific crops seems to vary in intensity from year to year. However, surveys during the past ten years suggest a fairly consistent level of total damage state-wide. The damage in 1968-and I believe in 1969—was somewhat lighter than we have come to expect from past exper¬ience. (See table 2.) On a per acre basis the damage in 1968 showed a considerable decline when compared to previous years. A part of this decline is probably a temporary situation. Some of the decline in losses to rice and grain sorghum, however, are due to changes in varieties, such as development of bird-resistant milo, and to changes in cultural methods. Further appreciable reductions due to changes in these factors seem unlikely, (see table 3.) Since rice producers sustain the greatest losses to birds, they have generated the greatest demand for bird control programs. Three species are responsible for most of the damage to rice. They are the red-winged blackbird, common grackle and brown-headed cowbird. These birds have created problems for rice producers since the first successful rice crop was grown near Lonoke, Arkansas, in 1904.
Resumo:
"How large a sample is needed to survey the bird damage to corn in a county in Ohio or New Jersey or South Dakota?" Like those in the Bureau of Sport Fisheries and Wildlife and the U.S.D.A. who have been faced with a question of this sort we found only meager information on which to base an answer, whether the problem related to a county in Ohio or to one in New Jersey, or elsewhere. Many sampling methods and rates of sampling did yield reliable estimates but the judgment was often intuitive or based on the reasonableness of the resulting data. Later, when planning the next study or survey, little additional information was available on whether 40 samples of 5 ears each or 5 samples of 200 ears should be examined, i.e., examination of a large number of small samples or a small number of large samples. What information is needed to make a reliable decision? Those of us involved with the Agricultural Experiment Station regional project concerned with the problems of bird damage to crops, known as NE-49, thought we might supply an ans¬wer if we had a corn field in which all the damage was measured. If all the damage were known, we could then sample this field in various ways and see how the estimates from these samplings compared to the actual damage and pin-point the best and most accurate sampling procedure. Eventually the investigators in four states became involved in this work1 and instead of one field we were able to broaden the geographical base by examining all the corn ears in 2 half-acre sections of fields in each state, 8 sections in all. When the corn had matured well past the dough stage, damage on each corn ear was assessed, without removing the ear from the stalk, by visually estimating the percent of the kernel surface which had been destroyed and rating it in one of 5 damage categories. Measurements (by row-centimeters) of the rows of kernels pecked by birds also were made on selected ears representing all categories and all parts of each field section. These measurements provided conversion factors that, when fed into a computer, were applied to the more than 72,000 visually assessed ears. The machine now had in its memory and could supply on demand a map showing each ear, its location and the intensity of the damage.