3 resultados para 760101 Global climate change adaptation measures
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Many challenges, including climate change, face the Nation’s water managers. The Intergovernmental Panel on Climate Change (IPCC) has provided estimates of how climate may change, but more understanding of the processes driving the changes, the sequences of the changes, and the manifestation of these global changes at different scales could be beneficial. Since the changes will likely affect fundamental drivers of the hydrological cycle, climate change may have a large impact on water resources and water resources managers. The purpose of this interagency report prepared by the U.S. Geological Survey (USGS), U.S. Army Corps of Engineers (USACE), Bureau of Reclamation (Reclamation), and National Oceanic and Atmospheric Administration (NOAA) is to explore strategies to improve water management by tracking, anticipating, and responding to climate change. The key points below briefly summarize the chapters in this report and represent underlying assumptions needed to address the many impacts of climate change.
Resumo:
Pollen and geochemical data from Little Lake, western Oregon, suggest several patterns of millennial-scale environmental change during marine isotope stage (MIS) 2 (14,100–27,600 cal yr B.P.) and the latter part of MIS 3 (27,600–42,500 cal yr B.P.). During MIS 3, a series of transitions between warm- and cold-adapted taxa indicate that temperatures oscillated by ca. 2±–4±C every 1000–3000 yr. Highs and lows in summer insolation during MIS 3 are generally associated with the warmest and coldest intervals. Warm periods at Little Lake correlate with warm sea-surface temperatures in the Santa Barbara Basin. Changes in the strength of the subtropical high and the jet stream may account for synchronous changes at the two sites. During MIS 2, shifts between mesic and xeric subalpine forests suggest changes in precipitation every 1000–3000 yr. Increases in Tsuga heterophylla pollen at 25,000 and 22,000 cal yr B.P. imply brief warmings. Minimum summer insolation and maximum global ice-volumes during MIS 2 correspond to cold and dry conditions. Fluctuations in precipitation at Little Lake do not correlate with changes in the Santa Barbara Basin and may be explained by variations in the strength of the glacial anticyclone and the position of the jet stream.
Resumo:
The Waxman-Markey Bill is a comprehensive national climate and energy legislation designed to reduce global warming pollution and transition to a clean energy economy. In order to accomplish the first goal, the bill introduces a cap-and-trade program.