2 resultados para 742
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Stabilizing human population size and reducing human-caused impacts on the environment are keys to conserving threatened species (TS). Earth's human population is ~ 7 billion and increasing by ~ 76 million per year. This equates to a human birth-death ratio of 2.35 annually. The 2007 Red List prepared by the International Union for Conservation of Nature and Natural Resources (IUCN) categorized 16,306 species of vertebrates, invertebrates, plants, and other organisms (e.g., lichens, algae) as TS. This is ~ 1 percent of the 1,589,161 species described by IUCN or ~ 0.0033 percent of the believed 5,000,000 total species. Of the IUCN’s described species, vertebrates comprised relatively the most TS listings within respective taxonomic categories (5,742 of 59,811), while invertebrates (2,108 of 1,203,175), plants (8,447 of 297,326), and other species (9 of 28,849) accounted for minor class percentages. Conservation economics comprises microeconomic and macroeconomic principles involving interactions among ecological, environmental, and natural resource economics. A sustainable-growth (steady-state) economy has been posited as instrumental to preserving biological diversity and slowing extinctions in the wild, but few nations endorse this approach. Expanding growth principles characterize most nations' economic policies. To date, statutory fine, captive breeding cost, contingent valuation analysis, hedonic pricing, and travel cost methods are used to value TS in economic research and models. Improved valuation methods of TS are needed for benefit-cost analysis (BCA) of conservation plans. This Chapter provides a review and analysis of: (1) the IUCN status of species, (2) economic principles inherent to sustainable versus growth economies, and (3) methodological issues which hinder effective BCAs of TS conservation.
Resumo:
Very well-preserved Pliocene diatoms from a diatomite unit interbedded within glacial sediments at Ocean Drilling Program Site 742 in Prydz Bay, Antarctica are documented and illustrated. The presence of Thalassiosira kolbei, T torokina, Actinocyclus actinochilus, A karstenii and the absence of Nitzschia interfrigidaria, T. insigna and T. vulnifica in Sample 119-742A-15R-4, 44-46 cm constrain its age to ca. 2.2-1.8 Ma (late Pliocene). Diatoms associated with sea ice constitute 35% of the Pliocene diatom assemblage, compared with 71% of the modern sediment assemblage at the site, suggesting that sea ice was present during the late Pliocene period of deposition of the sample, although it probably was not the significant feature it is today.