2 resultados para 330109 Assessment and Evaluation
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
In this action research study of my classroom of 8th grade mathematics, I investigated how to better prepare these students for quizzes and how technology can be used in the classroom. I discovered that there are many different ways to challenge students and help them prepare for assessments. There are also many ways to use technology in the classroom if one has the opportunities to use some of the tools, such as Power Point and Algebra Tiles. As a result of this research, I plan to increase the scores on state standards while also allowing the students to enjoy technology during this process.
Resumo:
Fibrous materials have morphological similarities to natural cartilage extracellular matrix and have been considered as candidate for bone tissue engineering scaffolds. In this study, we have evaluated a novel electrospun chitosan mat composed of oriented sub-micron fibers for its tensile property and biocompatibility with chondrocytes (cell attachment, proliferation and viability). Scanning electronic microscope images showed the fibers in the electrospun chitosan mats were indeed aligned and there was a slight cross-linking between the parent fibers. The electrospun mats have significantly higher elastic modulus (2.25 MPa) than the cast films (1.19 MPa). Viability of cells on the electrospun mat was 69% of the cells on tissue-culture polystyrene (TCP control) after three days in culture, which was slightly higher than that on the cast films (63% of the TCP control). Cells on the electrospun mat grew slowly the first week but the growth rate increased after that. By day 10, cell number on the electrospun mat was almost 82% that of TCP control, which was higher than that of cast films (56% of TCP). The electrospun chitosan mats have a higher Young’s modulus (P <0.01) than cast films and provide good chondrocyte biocompatibility. The electrospun chitosan mats, thus, have the potential to be further processed into three-dimensional scaffolds for cartilage tissue repair.