2 resultados para 1166
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
In social species, breeding system and gregarious behavior are key factors influencing the evolution of large-scale population genetic structure. The killer whale is a highly social apex predator showing genetic differentiation in sympatry between populations of foraging specialists (ecotypes), and low levels of genetic diversity overall. Our comparative assessments of kinship, parentage and dispersal reveal high levels of kinship within local populations and ongoing male-mediated gene flow among them, including among ecotypes that are maximally divergent within the mtDNA phylogeny. Dispersal from natal populations was rare, implying that gene flow occurs without dispersal, as a result of reproduction during temporary interactions. Discordance between nuclear and mitochondrial phylogenies was consistent with earlier studies suggesting a stochastic basis for the magnitude of mtDNA differentiation between matrilines. Taken together our results show how the killer whale breeding system, coupled with social, dispersal and foraging behaviour, contributes to the evolution of population genetic structure.
Resumo:
It is such a pleasure to honor innovation and strength in the Institute of Agriculture and Natural Resources today through this 2006 Omtvedt Innovation Award. This award is made possible because of the generosity of Leone and the late Neal Harlan, great friends of the Institute of Agriculture and Natural Resources. The Harlans had the vision and the foresight to realize the importance of recognizing and supporting outstanding and innovative work in the Institute, and honored Irv Omtvedt on his retirement as Vice Chancellor of the Institute with a generous gift of funds to support the Omtvedt Innovation Awards. These awards recognize areas of strength and promise within the Institute, as well as innovative research and programming by our faculty, staff, and students.