5 resultados para 1094
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
India has a third of the world’s tuberculosis cases. Large-scale expansion of a national program in 1998 has allowed for population-based analyses of data from tuberculosis registries. We assessed seasonal trends using quarterly reports from districts with stable tuberculosis control programs (population 115 million). In northern India, tuberculosis diagnoses peaked between April and June, and reached a nadir between October and December, whereas no seasonality was reported in the south. Overall, rates of new smear-positive tuberculosis cases were 57 per 100 000 population in peak seasons versus 46 per 100 000 in trough seasons. General health-seeking behavior artifact was ruled out. Seasonality was highest in paediatric cases, suggesting variation in recent transmission.
Resumo:
The great whales of the Southern Ocean were extensively exploited by modern whaling methods, with the first catches made in the Falkland Islands Dependencies region of IWC Management Area II in 1904 (Tønnesson and Johnsen, 1982; Hart, 2006). Exploitation went through several phases. Populations of humpback whales, Megaptera novaeangliae, and blue whales, Balaenoptera musculus, around South Georgia crashed around the time of World War I, and further exploitation occurred in other regions into the 1930’s. There was a hiatus in whaling during World War II, but large-scale catches resumed in Antarctic waters after 1945.
Resumo:
Network survivability is one of the most important issues in the design of optical WDM networks. In this work we study the problem of survivable routing of a virtual topology on a physical topology with Shared Risk Link Groups (SRLG). The survivable virtual topology routing problem against single-link failures in the physical topology is proved to be NP-complete in [1]. We prove that survivable virtual topology routing problem against SRLG/node failures is also NP-complete. We present an improved integer linear programming (ILP) formulation (in comparison to [1]) for computing the survivable routing under SRLG/node failures. Using an ILP solver, we computed the survivable virtual topology routing against link and SRLG failures for small and medium sized networks efficiently. As even our improved ILP formulation becomes intractable for large networks, we present a congestion-based heuristic and a tabu search heuristic (which uses the congestion-based heuristic solution as the initial solution) for computing survivable routing of a virtual topology. Our experimental results show that tabu search heuristic coupled with the congestion based heuristic (used as initial solution) provides fast and near-optimal solutions.
Resumo:
Stage-structured models that integrate demography and dispersal can be used to identify points in the life cycle with large effects on rates of population spatial spread, information that is vital in the development of containment strategies for invasive species. Current challenges in the application of these tools include: (1) accounting for large uncertainty in model parameters, which may violate assumptions of ‘‘local’’ perturbation metrics such as sensitivities and elasticities, and (2) forecasting not only asymptotic rates of spatial spread, as is usually done, but also transient spatial dynamics in the early stages of invasion. We developed an invasion model for the Diaprepes root weevil (DRW; Diaprepes abbreviatus [Coleoptera: Curculionidae]), a generalist herbivore that has invaded citrus-growing regions of the United States. We synthesized data on DRW demography and dispersal and generated predictions for asymptotic and transient peak invasion speeds, accounting for parameter uncertainty. We quantified the contributions of each parameter toward invasion speed using a ‘‘global’’ perturbation analysis, and we contrasted parameter contributions during the transient and asymptotic phases. We found that the asymptotic invasion speed was 0.02–0.028 km/week, although the transient peak invasion speed (0.03– 0.045 km/week) was significantly greater. Both asymptotic and transient invasions speeds were most responsive to weevil dispersal distances. However, demographic parameters that had large effects on asymptotic speed (e.g., survival of early-instar larvae) had little effect on transient speed. Comparison of the global analysis with lower-level elasticities indicated that local perturbation analysis would have generated unreliable predictions for the responsiveness of invasion speed to underlying parameters. Observed range expansion in southern Florida (1992–2006) was significantly lower than the invasion speed predicted by the model. Possible causes of this mismatch include overestimation of dispersal distances, demographic rates, and spatiotemporal variation in parameter values. This study demonstrates that, when parameter uncertainty is large, as is often the case, global perturbation analyses are needed to identify which points in the life cycle should be targets of management. Our results also suggest that effective strategies for reducing spread during the asymptotic phase may have little effect during the transient phase. Includes Appendix.
Resumo:
Bird damage to commercial fruits has long been a problem in many coun- tries, but the true magnitude of the damage incurred is difficult to determine objectively. Often the opinions of fruit growers provide the only measure of importance. In 1972, the U.S. Fish and Wildlife Service, the Michigan Department of Agriculture, and the Statistical Reporting Service of the U.S. Department of Agriculture obtained quantitative information on bird damage to tart cherries (Prunus mahalob) in Michigan. The results of the survey are presented in this paper.