7 resultados para 070203 Animal Management

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Michigan Departments of Agriculture, Community Health, and Natural Resources, US Department of Agriculture (USDA) and Michigan State University work cooperatively together as the bovine TB eradication project partners. The interagency group combines expertise in epidemiology, veterinary and human medicine, pathology, wildlife biology, animal husbandry, regulatory law and policy and risk communications. The stakeholders, those impacted by the disease, include agriculture and tourism industry representatives, “Mom-and-Pop” businesses, hunters, wildlife enthusiasts, farmers, Local Health Departments and legislators. The regulatory agencies are the above mentioned project partners, excluding MSU and USDA Wildlife Services, both of which offer services to agencies and stakeholders. Eradicating bovine TB would not be difficult if there were no social issues surrounding it. The economy, hunting traditions, animal management, tourism and human health are all impacted by regulatory response to the disease. Often the social issues play a large role in decision making, therefore it is important to understand your clientele and anticipate public reaction to policy changes and requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selection of the appropriate management unit is critical to the conservation of animal populations. Defining such units depends upon knowledge of population structure and upon the timescale being considered. Here, we examine the trajectory of eleven subpopulations of five species of baleen whales to investigate temporal and spatial scales in management. These subpopulations were all extirpated by commercial whaling, and no recovery or repopulation has occurred since. In these cases, time elapsed since commercial extinction ranges from four decades to almost four centuries. We propose that these subpopulations did not recover either because cultural memory of the habitat has been lost, because widespread whaling among adjacent stocks eliminated these as sources for repopulation, and/or because segregation following exploitation produced the abandonment of certain areas. Spatial scales associated with the extirpated subpopulations are frequently smaller than those typically employed in management. Overall, the evidence indicates that: (1) the time frame for management should be at most decadal in scope (i.e., <100 yr) and based on both genetic and nongenetic evidence of population substructure, and (2) at least some stocks should be defined on a smaller spatial scale than they currently are.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 1975, the gray wolf (Canis lupus) population in Minnesota was protected by the federal Endangered Species Act (USA). At that time, there were 500-750 wolves. By 2004, the population had grown to an estimated 3,020 wolves. Over time, conflicts between wolves and livestock increased. Wolf depredation control programs have been conducted by the U.S. Fish and Wildlife Service (1975-1986) and by the U.S. Department of Agriculture’s Wildlife Services program (1986 to present). In 1978, Minnesota’s wolves were reclassified from endangered to threatened which allowed authorized federal agents to lethally remove wolves that had depredated on livestock or pets. A State funded wolf compensation program was also established in 1978. Wildlife Services’ wolf damage management approach utilizes both nonlethal and lethal methods of control. Currently, wolf depredations are verified at 60-85 farms annually and 125-175 wolves are taken each year. Wolf compensation payments to livestock producers have averaged $67,111 per year during the past five years. Most livestock losses occur during spring and summer. Selective removal of depredating wolves, coupled with improvements in animal husbandry practices, has potential for reducing wolf-livestock conflicts. Minnesota’s wolf population is currently considered to be fully recovered and federal delisting is expected to occur in the near future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Livestock Waste Management Act requires all livestock operations with 300 animal units or more to be inspected by the Nebraska Department of Environmental Quality (DEQ) to determine whether livestock wastes contaminate surface or ground water. This NebFact discusses the following parts of the Livestock Waste Management Act: Act (how cited); Terms (defined); Livestock operation, exemption, livestock waste control facility, permit, restriction; Construction permit or operating permit (when required), livestock waste control facilities, classification, restrictions; Section (how construed); Cold water class A streams (designation); Permit (acknowledgment required); Livestock operation (request inspection, when, fees, department, duties); Permits (duration, modification); Permit (application and modification fees, Livestock Waste Management Cash Fund (created, use, investment, report, legislative intent); Applicant (rejection, grounds, application, information required, certification required); Postconstruction inspection requirement; Department (contracts authorized, permit application, notice required); Permit application (approval from Department of Natural Resources and Department of Environmental Quality, powers); Council (rules and regulations); and Enforcement of act (legislative intent).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scope and significance of human conflicts with urban and suburban Canada goose populations has been growing rapidly since the mid 1980s. A lack of basic understanding about the biology and ecology of locally abundant goose populations has led, in part, to argument between opposing camps over the appropriate approaches and methodologies to resolve human-goose conflicts. Animal welfare interests have focused on the humaneness of roundup and slaughter programs, and advocated non-lethal approaches coupled with what they view as the more benign population control activity of egg addling. Some traditional wildlife managers have argued that non-lethal approaches have been tried and have failed, and that procedures such as addling do not work quickly or effectively. Differences have led to legal confrontations that absorb considerable energy and effort and may make cooperative involvement more difficult. This paper articulates some of the arguments that comprises the basis for the perspective of animal welfarists. It ends with a call for greater cooperation and involvement between all interests concerned with Canada geese.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a nation we have gained world recognition for our ability to utilize our resources. In forestry our greatest accomplishments have been in the mechanization of harvest methods and in improvements in forest products. The renewal of this resource has been our greatest neglect. Though the end of the 19th Century marked the beginning of the conservation movement, it was not until a half century later that the force of economics through the demands of a growing population made forest re-establishment more than just a desire. Conservation in itself is a Utopian concept which requires other motivating forces to make it a reality. In the post-war years, and as late as the early 195O's, stocked land in the Pacific Northwest could be purchased for less than the cost of planting; the economic incentive was lacking. Only with sustained yield management and increased land values was there a balance in favor of true values. With greater effort placed on forest regeneration there was an increased need for methods of reducing losses to wildlife. The history of forest wildlife damage research, therefore, parallels that of forest land management; after rather austere beginnings, development became predominantly a response to economics. It was not until 1950 that the full time of one scientist was assigned to this important activity. The development of control methods for forest animal damage is a relatively new area of research. All animal life is dependent upon plants for its existence; forest wildlife is no exception. The removal of seed and foliage of undesirable plants often benefits the land managers; only when the losses or injuries are in conflict with man's interest is there damage involved. Unfortunately, the feeding activities of wildlife and the interests of the land managers are often in conflict. Few realize the breadth, scope, and subtilities associated with forest wildlife damage problems. There are not only numerous species of animals involved, but also a myriad of conditions, each combination possessing unique facets. It is a foregone conclusion that an understanding of the conditions is essential to facilitate a solution to any given problem. Though there are numerous methods of reducing animal damage, all of which have application under some situations, in this discussion emphasis will be placed on the role of chemicals and on western problems. Because of the broadness and complexity of the problem, generalizing is necessary and only brief coverage will be possible. However, an attempt will be made to discuss the use and limitations of various control methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expensive, extensive and apparently lethal control measures have been applied against many species of pest vertebrates and invertebrates for decades. In spite of this, few pests have been annihilated, and in many cases the stated goals have become progressively more modest, so that now we speak of saving foliage or a crop, rather than extermination. It is of interest to examine the reasons why animals are so difficult to exterminate, because this matter, of course, has implications for the type of control policy we pursue in the future. Also, it has implications for the problem of evaluating comparatively various resource management strategies. There are many biological mechanisms which could, in principle, enhance the performance of an animal population after control measures have been applied against it. These are of four main types: genetic, physiological, populationa1, and environmental. We are all familiar with the fact that in applying a control measure, we are, from the pest's point of view, applying intense selection pressure in favor of those individuals that may be preadapted to withstand the type of control being used. The well-known book by Brown (1958) documents, for invertebrates, a tremendous number of such cases. Presumably, vertebrates can show the same responses. Not quite so familiar is the evidence that sub-lethal doses of a lethal chemical may have a physiologically stimulating effect on population performance of the few individuals that happen to survive (Kuenen, 1958). With further research, we may find that this phenomenon occurs throughout the animal kingdom. Still less widely recognized is the fact that pest control elicits a populational homeostatic mechanism, as well as genetic and physiological homeostatic mechanisms. Many ecologists, such as Odum and Allee (1950, Slobodkin (1955), Klomp (1962) and the present author (1961, 1963) have pointed out that the curve for generation survival, or the curve for trend index as a function of last generations density is of great importance in population dynamics.