79 resultados para USDA
Resumo:
Registration is a necessarily sophisticated evaluation process applied to vertebrate pesticide products. Although conducted to minimize any potential impacts upon public health, the environment and food production, the all-encompassing process of registration can stifle innovation. Vertebrate pesticides are rarely used to control pest animals in food crops. In contrast to agrochemicals, relatively small amounts of vertebrate pesticides are used (50.1%), usually in solid or paste baits, and generally by discrete application methods rather than by broad-scale spray applications. We present a hierarchy or sliding scale of typical data requirements relative to application techniques, to help clarify an evolving science-based approach which focuses on requiring data to address key scientific questions while allowing waivers where additional data have minor value. Such an approach will facilitate the development and delivery of increasingly humane, species-targeted, low residue pesticides in the New World, along with the phasing out of less desirable chemicals that continue to be used due to a lack of alternatives.
Resumo:
In order to determine potential definitive hosts of the digenetic trematode, Bolbophorus damnificus, two American White Pelicans (Pelecanus erythrorhynchos), two Double-crested Cormorants (Phalacrocorax auritus), two Great Blue Herons (Ardea herodias), and two Great Egrets (Ardea alba) were captured, treated with praziquantel, and fed channel catfish (Ictalurus punctatus) infected with B. damnificus metacercariae. Patent infections of B. damnificus, which developed in both American White Pelicans at 3 days post-infection, were confirmed by the presence of trematode ova in the feces. Mature B. damnificus trematodes were recovered from the intestines of both pelicans at 21 days post-infection, further confirming the establishment of infection. No evidence of B. damnificus infections was observed in the other bird species studied. This study provides further evidence that Double-crested Cormorants, Great Blue Herons, and Great Egrets do not serve as definitive hosts for B. damnificus.
Resumo:
In west-central Texas, USA, abatement efforts for the gray fox (Urocyon cinereoargenteus) rabies epizootic illustrate the difficulties inherent in large-scale management of wildlife disease. The rabies epizootic has been managed through a cooperative oral rabies vaccination program (ORV) since 1996. Millions of edible baits containing a rabies vaccine have been distributed annually in a 16-km to 24-km zone around the perimeter of the epizootic, which encompasses a geographic area >4 x 105 km2. The ORV program successfully halted expansion of the epizootic into metropolitan areas but has not achieved the ultimate goal of eradication. Rabies activity in gray fox continues to occur periodically outside the ORV zone, preventing ORV zone contraction and dissipation of the epizootic. We employed a landscape-genetic approach to assess gray fox population structure and dispersal in the affected area, with the aim of assisting rabies management efforts. No unique genetic clusters or population boundaries were detected. Instead, foxes were weakly structured over the entire region in an isolation by distance pattern. Local subpopulations appeared to be genetically non-independent over distances >30 km, implying that long-distance movements or dispersal may have been common in the region. We concluded that gray foxes in west-central Texas have a high potential for long-distance rabies virus trafficking. Thus, a 16-km to 24-km ORV zone may be too narrow to contain the fox rabies epizootic. Continued expansion of the ORV zone, although costly, may be critical to the long-term goal of eliminating the Texas fox rabies virus variant from the United States.
Resumo:
Chelydra serpentine serpentine (Common Snapping Turtle). Nesting Behavior and Site Selection. On May 31, 2008, we observed a ca. 36 cm CL Chelydra serpentine serpentine in unexpected nesting circumstances. Observations were made from 0908 to 1027 h on clear day with ambient temp ca 24° C. The nest site near Longmont, Colorado, USA (40.1599528°N, 105.1259861°W; WGS84) was 4.3 m from a seasonal ditch running north-south to connect two lakes, one on either side of a busy road. The intriguing aspect of the nest location was that it was immediately adjacent to a heavily traveled concrete sidewalk that bordered a road with a high volume of traffic. The frequent foot traffic on the sidewalk and virtually constant vehicle traffic on the adjacent road did not deter the turtle from the particular nest location, even though virtually identical soils, gradients, and directional aspects were available equidistant from the ditch, but away from constant human activity.
Resumo:
Broad-spectrum herbicide applications and improved harvesting efficiency of crops have reduced the availability of weed seeds and waste grains for game and nongame wildlife. Over the last decade, corn and soybean plantings have steadily increased in the Prairie Pothole Region (PPR) of North Dakota, while sunflower plantings have declined. The PPR is an important corridor for migratory birds, and changes in food availabilities at stopover habitats may affect how food resources are used. In early spring 2003 and 2004, we compared bird use of harvested fields of sunflower, soybeans, small grains, and corn in the PPR of North Dakota. Across both years and all crop types, we observed 20,400 birds comprising 29 species. Flocks of Lapland Longspurs (Calcarius lapponicus) and Horned Larks (Eremophila alpestris) and flocks of Red-winged Blackbirds (Agelaius phoeniceus) made up 60% and 15%, respectively, of the bird counts. We found that species richness and bird densities were higher in harvested sunflower fields and cornfields than in harvested small-grain and soybean fields, with soybean fields harboring the fewest species and lowest bird density. Blackbird densities tended to be lower in fields tilled after fall harvest than in fields not tilled. These results suggest that some granivorous bird populations in the Northern Great Plains could be positively affected by planting of row crops with postharvest vertical structure (e.g., sunflower, corn) and use of no-till land management practices.
Resumo:
Highlights • Wildlife Services used GIS and GPS to document and track bait distribution during each bait drop. • GIS and GPS were critical in making this eradication project effective and environmentally safe. • Use of the technologies ensured the coverage necessary for the project's goals.
Resumo:
Several wildlife species have tested positive for bovine tuberculosis in Michigan and may potentially transmit the disease to other animals. Coyotes have the highest known prevalence in the endemic area and thus, our objective was to investigate the shedding of Mycobacterium bovis by coyotes. Four coyotes were orally inoculated with 1 ml of 1 x 105 CFU/ml of M. bovis. Oral and nasal swabs, and feces were collected regularly and tested by culture. Fecal samples were also tested by exposing guinea pigs to the coyotes' feces. All animals were necropsied to determine if infection occurred. All swabs, feces and tissues were negative on culture. The dosage of M. bovis given to these coyotes was considered biologically relevant, but was insufficient for causing infection. Due to the lack of infection, we still do not know the risk coyotes pose for shedding M. bovis.
Resumo:
Rose-ringed parakeets (Psittacula krameri) have become widely established outside their native range through accidental or deliberate release. Potential economic impacts on agriculture, conservation concerns, and mixed public opinion regarding the species have highlighted the need to develop effective but humane management options. Fertility control might provide such a solution if a safe and environmentally benign contraceptive was available. The chemical 20,25-diazacholesterol dihydrochloride (diazacon) has previously been used to reduce reproductive output in avian species through reduction of blood cholesterol and cholesterol-dependent reproductive hormones. We orally dosed captive rose-ringed parakeets with a solution of either 9 mg/kg or 18 mg/kg of diazacon for up to 10 days and found that a dose of 18 mg/kg for 10 days temporarily reduced blood cholesterol levels with no adverse side effects. We evaluated this dose level in a captive population in semi-natural conditions during the 2008 breeding season and found a significant decrease in fertility. We concluded that diazacon has potential for fertility control in this species if a suitable formulation and delivery system is developed for free-living populations.
Resumo:
Wild and domestic ungulates modify their behavior in the presence of olfactory and visual cues of predators but investigations have not exposed a domestic species to a series of cues representing various predators and other ungulate herbivores.We used wolf (Canis lupus), mountain lion (Puma concolor), and mule deer (Odocoileus hemionus) stimuli (olfactory and visual), and a control (no stimuli) to experimentally test for differences in behavior of cattle (Bos taurus) raised in Arizona. We measured (1) vigilance, (2) foraging rates, (3) giving up density (GUD) of high quality foods and (4) time spent in high quality forage locations in response to location of stimuli treatments. In general, we found a consistent pattern in that wolf and deer treatments caused disparate results in all 4 response variables. Wolf stimuli significantly increased cattle vigilance and decreased cattle foraging rates; conversely, deer stimuli significantly increased cattle foraging rate and increased cattle use of high quality forage areas containing stimuli. Mountain lion stimuli did not significantly impact any of the 4 response variables. Our findings suggest that domestic herbivores react to predatory stimuli, can differentiate between stimuli representing two predatory species, and suggest that cattle may reduce antipredatory behaviour when near heterospecifics.
Resumo:
INFLUENZA A virus (IAV) (family Orthomyxoviridae) is a highly infectious respiratory pathogen of birds and mammals, including human beings and horses (Palese and Shaw 2007). The virus is classified into different subtypes based on the antigenic properties of the haemagglutinin (HA) and neuraminidase (NA) proteins. Sixteen HA subtypes (H1 to H16) and nine NA subtypes (N1 to N9) have been identified (Fouchier and others 2005). Two subtypes, H3N8 and H7N7, have been isolated from horses. The H7N7 subtype was first isolated from a horse in Czechoslovakia in 1956 (Prague/56) (Sovinova and others 1958), and the H3N8 subtype was first isolated from a horse in Miami, USA, in 1963 (Waddell and others 1963). The H7N7 subtype has not been isolated from horses for three decades and is presumed to be extinct (Webster 1993). The H3N8 subtype is currently a common cause of disease in horses worldwide. In horses, influenza is characterized by an abrupt onset of pyrexia, depression, coughing and nasal discharge, and is often complicated by secondary bacteria infections that can lead to pneumonia and death (Hannant and Mumford 1996). Although H3N8 is a major cause of morbidity in horses throughout the world, information on the seroprevalence of IAV in horses and other domestic animals in Mexico is limited.
Resumo:
Context. Invasive species are a growing global problem. Biological invasions can result in numerous harmful impacts on local ecologies, and non-native herpetofauna are frequently ignored. Nile monitor lizards (Varanus niloticus) and Burmese pythons (Python molurus bivittatus, recently reassessed as Python bivittatus bivittatus), have become established in southern Florida. Both are large, semi-aquatic predators that pose serious threats to a variety of threatened and endangered species, as well as to the unique ecology of the area. Aims. Acetaminophen (CAS#103-90-2), a lethal oral toxicant for the invasive brown treesnake (Boiga irregularis) on Guam, was investigated as a possible toxicant in juvenile Burmese pythons and Nile monitors. Methods. Dead neonatal mouse (DNM) baits containing 0, 10, 20, or 40 mg acetaminophen were force-fed to Nile monitors, whereas DNM containing doses of 0, 20, 40, or 80 mg were freely consumed by Burmese pythons. Subjects were frequently observed post-treatment for general condition and position, with special attention paid to activity (if any), behaviour, respiration, bleeding, emesis, ataxia, and mortality. Key results. In Nile monitors, acetaminophen doses of 10, 20, or 40 mg resulted in 0, 50 and 100% mortality, respectively. In Burmese pythons, doses of 20, 40, or 80 mg resulted in 14.3, 85.7 and 100% mortality, respectively. No mortality was observed in control individuals of either species. A negative correlation between dosage (mg kg–1) and time-to-death was observed in both species. Dosages ranging from 522 to 2438 mg kg–1 and 263 to 703 mg kg–1 were uniformly lethal to monitors and pythons, respectively. Neither species exhibited signs of pain or discomfort following acetaminophen treatment. Conclusions. Acetaminophen is an effective toxicant in juvenile Nile monitors and Burmese pythons. Further investigation into acetaminophen toxicity in adults of these species is merited. Implications. Although further investigation into adult lethal dosages and strategies to optimize bait deployment while minimizing secondary hazards is required, acetaminophen may have a role to play in the control of these invasive species in Florida.
Resumo:
Analytical methods accounting for imperfect detection are often used to facilitate reliable inference in population and community ecology. We contend that similar approaches are needed in disease ecology because these complicated systems are inherently difficult to observe without error. For example, wildlife disease studies often designate individuals, populations, or spatial units to states (e.g., susceptible, infected, post-infected), but the uncertainty associated with these state assignments remains largely ignored or unaccounted for. We demonstrate how recent developments incorporating observation error through repeated sampling extend quite naturally to hierarchical spatial models of disease effects, prevalence, and dynamics in natural systems. A highly pathogenic strain of avian influenza virus in migratory waterfowl and a pathogenic fungus recently implicated in the global loss of amphibian biodiversity are used as motivating examples. Both show that relatively simple modifications to study designs can greatly improve our understanding of complex spatio-temporal disease dynamics by rigorously accounting for uncertainty at each level of the hierarchy.
Resumo:
Raccoons are the reservoir for the raccoon rabies virus variant in the United States. To combat this threat, oral rabies vaccination (ORV) programs are conducted in many eastern states. To aid in these efforts, the genetic structure of raccoons (Procyon lotor) was assessed in southwestern Pennsylvania to determine if select geographic features (i.e., ridges and valleys) serve as corridors or hindrances to raccoon gene flow (e.g., movement) and, therefore, rabies virus trafficking in this physiographic region. Raccoon DNA samples (n = 185) were collected from one ridge site and two adjacent valleys in southwestern Pennsylvania (Westmoreland, Cambria, Fayette, and Somerset counties). Raccoon genetic structure within and among these study sites was characterized at nine microsatellite loci. Results indicated that there was little population subdivision among any sites sampled. Furthermore, analyses using a model-based clustering approach indicated one essentially panmictic population was present among all the raccoons sampled over a reasonably broad geographic area (e.g., sites up to 36 km apart). However, a signature of isolation by distance was detected, suggesting that widths of ORV zones are critical for success. Combined, these data indicate that geographic features within this landscape influence raccoon gene flow only to a limited extent, suggesting that ridges of this physiographic system will not provide substantial long-term natural barriers to rabies virus trafficking. These results may be of value for future ORV efforts in Pennsylvania and other eastern states with similar landscapes.
Resumo:
Human monkeypox has never been reported in Ghana, but rodents captured in forested areas of southern Ghana were the source of the monkeypox virus introduced into the United States in 2003. Subsequent to the outbreak in the United States, 204 animals were collected from two commercial trapping sites in Ghana. Animal tissues were examined for the presence of orthopoxvirus (OPXV) DNA using a real-time polymerase chain reaction, and sera were assayed for antibodies against OPXV. Animals from five genera (Cricetomys , Graphiurus , Funiscirus, and Heliosciurus ) had antibodies against OPXV, and three genera (Cricetomys , Graphiurus , and Xerus) had evidence of OPXV DNA in tissues. Additionally, 172 persons living near the trapping sites were interviewed regarding risk factors for OPXV exposure, and their sera were analyzed. Fifty-three percent had IgG against OPXV; none had IgM. Our findings suggest that several species of forest-dwelling rodents from Ghana are susceptible to naturally occurring OPXV infection, and that persons living near forests may have low-level or indirect exposure to OPXV-infected animals, possibly resulting in sub-clinical infections.
Resumo:
In Hawaii, invasive plants have the ability to alter litter-based food chains because they often have litter traits that differ from native species. Additionally, abundant invasive predators, especially those representing new trophic levels, can reduce prey. The relative importance of these two processes on the litter invertebrate community in Hawaii is important, because they could affect the large number of endemic and endangered invertebrates. We determined the relative importance of litter resources, represented by leaf litter of two trees, an invasive nitrogen-fixer, Falcataria moluccana, and a native tree, Metrosideros polymorpha, and predation of an invasive terrestrial frog, Eleutherodactylus coqui, on leaf litter invertebrate abundance and composition. Principle component analysis revealed that F. moluccana litter creates an invertebrate community that greatly differs from that found in M. polymorpha litter. We found that F. moluccana increased the abundance of non-native fragmenters (Amphipoda and Isopoda) by 400% and non-native predaceous ants (Hymenoptera: Formicidae) by 200%. E. coqui had less effect on the litter invertebrate community; it reduced microbivores by 40% in F. moluccana and non-native ants by 30% across litter types. E. coqui stomach contents were similar in abundance and composition in both litter treatments, despite dramatic differences in the invertebrate community. Additionally, our results suggest that invertebrate community differences between litter types did not cascade to influence E. coqui growth or survivorship. In conclusion, it appears that an invasive nitrogen-fixing tree species has a greater influence on litter invertebrate community abundance and composition than the invasive predator, E. coqui.