37 resultados para Mathematics education|Curriculum development
Resumo:
In this action research study of my classroom of eighth grade mathematics, I investigated the attitudes of students toward mathematics along with their achievement levels with the use of oral presentations in my Algebra class. During the second semester the class was divided into groups of two for each presentation, changing partners each time. Every other week each group was given a math problem that required more work than a normal homework type problem. On the last day of that week the students gave a short presentation on their problem. I discovered that while there was no significant evidence that student achievement increased, the students did enjoy the different aspect of presentations in a math class. I plan to implement presentations in my classroom more often with the intent to increase student enjoyment.
Resumo:
In this action research study of my classroom of eighth grade mathematics, I investigated the use of manipulatives and its impact on student attitude and understanding. I discovered that overall, students enjoy using manipulatives, not necessarily for the benefit of learning, but because it actively engages them in each lesson. I also found that students did perform better on exams when students were asked to solve problems using manipulatives in place of formal written representations of situations. In the course of this investigation, I also uncovered that student attitude toward mathematics improved when greater manipulative use was infused into the lessons. Students felt more confident that they understood the material, which translated into a better attitude regarding math class. As a result of this research, I plan to find ways to implement manipulatives in my teaching on a more regular basis. I intend to create lessons with manipulatives that will engage both hands and minds for the learners.
Resumo:
In this action research study of my seventh grade mathematics classroom, I investigated what written communication within the mathematics classroom would look like. I increased vocabulary instruction of specific mathematical terms for my students to use in their writing. I also looked at what I would have to do differently in my teaching in order for my students to be successful in their writing. Although my students said that using writing to explain mathematics helped them to better understand the math, my research revealed that student writing did not necessarily translate to improved scores. After direct instruction and practice on math vocabulary, my students did use the vocabulary words more often in their writing; however, my students used the words more like they would in spelling sentences rather than to show what it meant and how it can be applied within their written explanation in math. In my teaching, I discovered I tried many different strategies to help my students be successful. I was very deliberate in my language and usage of vocabulary words and also in my explanations of various math concepts. As a result of this research, I plan to continue having my students use writing to communicate within the mathematics classroom. I will keep using some of the strategies I found successful. I also will be very deliberate in using vocabulary words and stress the use of vocabulary words with my students in the future.
Resumo:
In this action research study of my classroom of 8th grade algebra, I investigated students’ discussion of mathematics and how it relates to interest in the subject. Discussion is a powerful tool in the classroom. By relying too heavily on drill and practice, a teacher may lose any individual student insight into the learning process. However, in order for the discussion to be effective, students must be provided with structure and purpose. It is unrealistic to expect middle school age students to provide their own structure and purpose; a packet was constructed that would allow the students to both show their thoughts and work as a small group toward a common goal. The students showed more interest in the subject in question as they related to the algebra topics being studied. The students appreciated the packets as a way to facilitate discussion rather than as a vehicle for practicing concepts. Students still had a need for practice problems as part of their homework. As a result of this research, it is clear that discussion packets are very useful as a part of daily instruction. While there are modifications that must be made to the original packets to more clearly express the expectations in question, discussion packets will continue to be an effective tool in the classroom.
Resumo:
In this action research study of 55 sophomore and junior students in my Algebra II/Trigonometry classrooms, I investigated a reading strategy of learning mathematics. Students were given background information about reading and explored the benefits of reading for themselves. Next, students were taught to read their textbook, analyzing one section of the textbook at a time. Throughout the research project, students were given reading guides to fill out during class with whole class discussion following the reading time. I discovered that students are able to read a mathematics textbook with understanding and students who are gone for activities can learn independently. Teacher observations, student surveys, and student interviews provide quantitative evidence of increased student understanding and achievement. As a result of this research, I plan to continue utilizing the reading guides and incorporating reading as a method of learning mathematics within my classrooms.
Resumo:
This paper explores the idea of using differentiation strategies in the content-area classroom to improve reading skills and comprehension. In particular, this thesis explores methods and strategies that can be used in the classroom to help address the individual needs of English language learners (ELLs). A broad range of experts in curriculum, differentiation, and English language acquisition were consulted in the development of this review, which synthesizes the research on ELLs’ needs, differentiation, and differentiation strategies for ELL readers. The models for best teaching practices are then placed within a ninth grade language arts unit.
Resumo:
The decreasing number of women who are graduating in the Science, Technology, Engineering and Mathematics (STEM) fields continues to be a major concern. Despite national support in the form of grants provided by National Science Foundation, National Center for Information and Technology and legislation passed such as the Deficit Reduction Act of 2005 that encourages women to enter the STEM fields, the number of women actually graduating in these fields is surprisingly low. This research study focuses on a robotics competition and its ability to engage female adolescents in STEM curricula. Data have been collected to help explain why young women are reticent to take technology or engineering type courses in high school and college. Factors that have been described include attitudes, parental support, social aspects, peer pressure, and lack of role models. Often these courses were thought to have masculine and “nerdy” overtones. The courses were usually majority male enrollments and appeared to be very competitive. With more female adolescents engaging in this type of competitive atmosphere, this study gathered information to discover what about the competition appealed to these young women. Focus groups were used to gather information from adolescent females who were participating in the First Lego League (FLL) and CEENBoT competitions. What enticed them to participate in a curriculum that data demonstrated many of their peers avoided? FLL and CEENBoT are robotics programs based on curricula that are taught in afterschool programs in non-formal environments. These programs culminate in a very large robotics competition. My research questions included: What are the factors that encouraged participants to participate in the robotics competition? What was the original enticement to the FLL and CEENBoT programs? What will make participants want to come back and what are the participants’ plans for the future? My research mirrored data of previous findings such as lack of role models, the need for parental support, social stigmatisms and peer pressure are still major factors that determine whether adolescent females seek out STEM activities. An interesting finding, which was an exception to previous findings, was these female adolescents enjoyed the challenge of the competition. The informal learning environments encouraged an atmosphere of social engagement and cooperative learning. Many volunteers that led the afterschool programs were women (role models) and a majority of parents showed support by accommodating an afterschool situation. The young women that were engaged in the competition noted it was a friendly competition, but they were all there to win. All who participated in the competition had a similar learning environment: competitive but cooperative. Further research is needed to determine if it is the learning environment that lures adolescent females to the program and entices them to continue in the STEM fields or if it is the competitive aspect of the culminating activity. Advisors: James King and Allen Steckelberg