42 resultados para Killer Whales
Resumo:
Knowledge of the local and migratory movements of humpback whales (Megaptera novaeangliae) from New Caledonia is very limited. To investigate this topic, we attached satellite-monitored tags to 12 whales off southern New Caledonia. Tag longevity ranged from 1 to 52 days (X = 22.5 days). Tagged whales generally moved to the south or southeast, with several spending time in a previously unknown seamount habitat named Antigonia before resuming movement, generally toward Norfolk Island or New Zealand. However, 1 female with a calf traveled the entire length of the western coast of New Caledonia (~450 km) and then west in the direction of the Chesterfield Reefs, a 19th century American (“Yankee”) whaling ground. None of the New Caledonia whales traveled to or toward eastern Australia, which is broadly consistent with the low rate of interchange observed from photo-identification comparisons between these 2 areas. The connections between New Caledonia and New Zealand, together with the relatively low numbers of whales seen in these places generally, support the idea that whales from these 2 areas constitute a single population that remains small and unrecovered.
Resumo:
A demographic model is developed based on interbirth intervals and is applied to estimate the population growth rate of humpback whales (Megaptera novaeangliae) in the Gulf of Maine. Fecundity rates in this model are based on the probabilities of giving birth at time t after a previous birth and on the probabilities of giving birth first at age x. Maximum likelihood methods are used to estimate these probabilities using sighting data collected for individually identified whales. Female survival rates are estimated from these same sighting data using a modified Jolly–Seber method. The youngest age at first parturition is 5 yr, the estimated mean birth interval is 2.38 yr (SE = 0.10 yr), the estimated noncalf survival rate is 0.960 (SE = 0.008), and the estimated calf survival rate is 0.875 (SE = 0.047). The population growth rate (l) is estimated to be 1.065; its standard error is estimated as 0.012 using a Monte Carlo approach, which simulated sampling from a hypothetical population of whales. The simulation is also used to investigate the bias in estimating birth intervals by previous methods. The approach developed here is applicable to studies of other populations for which individual interbirth intervals can be measured.
Resumo:
The known summer feeding range of the North Pacific humpback whale (Megaptera novaeangliae) extends from California, along the coasts of Oregon, Washington, and Alaska, into the Bering Sea, along the Aleutian Islands, the Sea of Okhotsk (Tomilin 1957), and to northern Japan (Rice 1977). In feeding areas of the northeastern Pacific Ocean, humpback whale photoidentification research has been concentrated off California (Calambokidis et al. 1993), southeastern Alaska (Darling and McSweeney 1985, Baker et al. 1986, 1992; Perry et al. 1990), Prince William Sound in Alaska (von Ziegesar 1992), the Oregon and Washington coasts (Calambokidis et al. 1993), and British Columbia (Darling and McSweeney 1985; Graerne Ellis, unpublished data). Results of these photoidentification studies have documented that individual whales tend to return to the same general areas in subsequent years (Darling and McSweeney 1985, Baker et al. 1986, Calambokidis et a(. 1996, von Ziegesar et al. 1994).
Resumo:
Heterochrony, the change in timing of developmental processes, is thought to be a key process shaping the numerous limb morphologies of tetrapods. Through a delayed offset in digit development, all cetaceans (i.e., whales, dolphins, and porpoises) have evolved supernumary phalanges (hyperphalangy). Moreover, some toothed cetaceans further alter digital morphologies by delayed endochondral and perichondral ossification of individual elements. In the harbor porpoise (Phocoena phocoena), these paedomorphic patterns have created poorly ossified phalangeal elements. However, no studies have addressed this morphology in other porpoise taxa. This study documents the timing of carpal and digital epiphyseal ossification in the poorly studied vaquita (Phocoena sinus) based on radiographs (n = 18) of known-age specimens. Patterns of vaquita manus ossification were compared between other porpoise and delphinid taxa. Adult vaquitas are paedomorphic in carpal, metacarpal, and digital development as they maintain a juvenile ossification pattern relative to that of other porpoise species of equivalent ages. Vaquitas also ossify fewer carpal elements as compared to other porpoise and some delphinid cetaceans, and ossification arrests relative to that of the harbor porpoise. Vaquitas also display sexual dimorphism as females reach a greater body size and display more ossified elements in the manus relative to their paedomorphic male cohorts.
Resumo:
The Government of Japan, through the Institute for Cetacean Research (Tokyo), has established a DNA register for whales taken under special permit or otherwise destined for commercial markets (IWC 2005; IWC 2010a). The functionality of this DNA register, for the purposes of traceability/trackability, is critical to the current negotiations on the future of the IWC (IWC 2010b). Here we request access to the DNA register for 3 species of whales (fin, sei and Antarctic minke) for the purposes of tracking the origins of whale products purchased at commercial outlets in Seoul, South Korea and Santa Monica, US, as described in the Baker et al. (2010). The attached proposal was included as Supplementary Material to this published article and submitted for consideration to the IWC Data Availability Group (DAG) on 12 April 2010. However, the DAG declined to forward the proposal to the data holders, recommending that we “wait until the Scientific Committee has reviewed the proposed DNA register/market sampling text in the draft Consensus Decision in accordance with the Commission's instructions and then reported to the Commission itself” (email 16 May 2010). We assume that this will take place at SC/62 in Agadir and request that this proposal be considered for endorsement by the DNA subcommittee.
Resumo:
Gray whales (Eschrichtius robustus) occur along the eastern and western coastlines of the North Pacific as two geographically isolated populations and have traditionally been divided into the eastern (California-Chukchi) and western (Korean-Okhotsk) populations. Recent molecular comparisons confirm, based on differences in haplotypic frequencies, that these populations are genetically separated at the population-level. Both populations were commercially hunted, but only the eastern gray whale has returned to near pre-exploitation numbers. In contrast, the western population remains highly depleted, shows no apparent signs of recovery and its future survival remains uncertain. Research off Sakhalin Island, Russia between 1995 and 1999 has produced important new information on the present day conservation status of western gray whales and provided the basis for the World Conservation Union (IUCN) to list the population as 'Critically Endangered in 2000. The information presented here, in combination with potential impacts from anthropogenic threats throughout the range of this population, raises strong concerns about the recovery and continued survival of the western gray whale.
Resumo:
In April 1998, as part of a project to collect biopsy samples of putative pygmy blue whales (Balaenoptera musculus brevicauda) in the waters around the Republic of the Maldives, Indian Ocean, incidental sightings of cetaceans encountered were recorded. Using modified line-transect methods and handheld binoculars, a total of 267 sightings of 16 species of whales and dolphins were recorded during 20 at-sea days in the northeastern part of the atoll. Significant results include the following: (1) cetaceans were abundant and species diversity was high, including nearly every pantropical species of pelagic cetacean; (2) the spinner dolphin (Stenella longirostris) was by far the most common species encountered (56 sightings) and also had the largest mean school size ( = 50.3 individuals); (3) blue whales were rare; only four individuals were sighted; (4) a large concentration of Bryde’s whales (28 sightings in two days) was apparently feeding in nearshore waters; (5) this paper reports the first records for the Maldives of Cuvier’s beaked whale (Ziphius cavirostris), Blainville’s beaked whale (Mesoplodon densirostris) and the dwarf sperm whale (Kogia sima): the latter was particularly common (17 sightings); (6) the spotted dolphin (Stenella attenuata) was rare and almost always associated with yellowfin tuna (Thunnus albacares), spinner dolphin, or seabirds, as has been reported in the eastern Pacific and western Indian oceans.
Resumo:
Morishita’s “multiple analysis”of the whaling issue [Morishita J. Multiple analysis of the whaling issue: Understanding the dispute by a matrix. Marine Policy 2006;30:802–8] is essentially a restatement of the Government of Japan’s whaling policy, which confuses the issue through selective use of data, unsubstantiated facts, and the vilification of opposing perspectives. Here, we deconstruct the major problems with Morishita’s article and provide an alternative view of the whaling dispute. For many people in this debate, the issue is not that some whales are not abundant, but that the whaling industry cannot be trusted to regulate itself or to honestly assess the status of potentially exploitable populations. This suspicion has its origin in Japan’s poor use of science, its often implausible stock assessments, its insistence that culling is an appropriate way to manage marine mammal populations, and its relatively recent falsification of whaling and fisheries catch data combined with a refusal to accept true transparency in catch and market monitoring. Japanese policy on whaling cannot be viewed in isolation, but is part of a larger framework involving a perceived right to secure unlimited access to global marine resources. Whaling is inextricably tied to the international fisheries agreements on which Japan is strongly dependent; thus, concessions made at the IWC would have potentially serious ramifications in other fora.
Resumo:
Eighteen years after initiating scientific whaling in Antarctic waters, Japan presented a new and more ambitious program to the International Whaling Commission (IWC); the proposal was made in early June during the IWC’s annual meeting in Ulsan, Korea. Japan now wishes to more than double its annual catch of Antarctic minke whales (from about 440 to 935), and to expand lethal sampling to include an additional yearly take of 50 humpback and 50 fin whales. Unlike catches for commercial whaling, scientific catches are unregulated. Since 1987, Japan has taken some 6,800 minke whales from Antarctic waters, despite ongoing criticism of the relevance and direction of Japan’s research. The IWC was set up to regulate commercial whaling and to conserve whale populations, under the authority of the 1946 International Convention for the Regulation of Whaling. Following a well-documented failure of management that led to the collapse of most global whale populations, the IWC set a zero quota for commercial whaling (the moratorium). This was made effective from 1986. Norway, the former Soviet Union and Japan initially objected to the moratorium, but Japan withdrew its objection and ceased commercial whaling in 1988.
Resumo:
You published recently (Nature 374, 587; 1995) a report headed "Error re-opens 'scientific' whaling debate". The error in question, however, relates to commercial whaling, not to scientific whaling. Although Norway cites science as a basis for the way in which it sets its own quota. scientific whaling means something quite different. namely killing whales for research purposes. Any member of the International Whaling Commission (IWC) has the right to conduct a research catch under the International Convention for the Regulation of Whaling. 1946. The IWC has reviewed new research or scientific whaling programs for Japan and Norway since the IWC moratorium on commercial whaling began in 1986. In every case, the IWC advised Japan and Norway to reconsider the lethal aspects of their research programs. Last year, however, Norway started a commercial hunt in combination with its scientific catch, despite the IWC moratorium.
Resumo:
Selection of the appropriate management unit is critical to the conservation of animal populations. Defining such units depends upon knowledge of population structure and upon the timescale being considered. Here, we examine the trajectory of eleven subpopulations of five species of baleen whales to investigate temporal and spatial scales in management. These subpopulations were all extirpated by commercial whaling, and no recovery or repopulation has occurred since. In these cases, time elapsed since commercial extinction ranges from four decades to almost four centuries. We propose that these subpopulations did not recover either because cultural memory of the habitat has been lost, because widespread whaling among adjacent stocks eliminated these as sources for repopulation, and/or because segregation following exploitation produced the abandonment of certain areas. Spatial scales associated with the extirpated subpopulations are frequently smaller than those typically employed in management. Overall, the evidence indicates that: (1) the time frame for management should be at most decadal in scope (i.e., <100 yr) and based on both genetic and nongenetic evidence of population substructure, and (2) at least some stocks should be defined on a smaller spatial scale than they currently are.
Resumo:
In late August 1991 scientists at the National Oceanic and Atmospheric Administration’s (NOAA) National Marine Mammal Laboratory (NMML) and Pacific Marine Environmental Laboratory (PMEL) began a pilot study to investigate the capability of hydrophones from the US. Navy’s fixed array system to detect large whales in the North Pacific by passive reception of their calls. PMEL had previously established a direct data link from five bottom-mounted arrays of the Navy SOSUS (Sound Surveillance System), via the Naval Oceanographic Processing Facility (NOPF) at Whidbey Island, Washington, to study low-level seafloor seismicity (Fox et al. 1994). PMEL subsequently provided NMML tapes of SOSUS hydrophone data from which whale calls were analyzed. As in an analogous study conducted in the North Atlantic (Nishimura and Conlon 1994, Clark 1995, Mellinger and Clark 1995), calls attributable to whales were received at each SOSUS site at rates that varied seasonally (Anonymous 1996).