80 resultados para Edwin B. Forsythe National Wildlife Refuge (N.J.)--Maps.
Resumo:
EQUINE influenza A virus (EIV) is a highly infectious respiratory pathogen of horses (Hannant and Mumford 1996, Palese and Shaw 2007). The illness is characterized by an abrupt onset of fever, depression, coughing and nasal discharge, and is often complicated by secondary bacterial infections that can lead to pneumonia and death. Two subtypes of EIV, H3N8 and H7N7, have been isolated. The H7N7 subtype was first isolated from a horse in Czechoslovakia in 1956 (Prague/56), and the H3N8 subtype was first isolated from a horse in Miami in 1963 (Sovinova and others 1958, Waddell and others 1963). The last confirmed outbreak of H7N7 occurred in 1979, and this subtype is now considered to be either extinct or circulating at low levels in a few geographical areas (Ismail and others 1990, Webster 1993, Singh 1994, Madic and others 1996, van Maanen and Cullinane 2002). The H3N8 subtype is a common cause of disease in horses worldwide, particularly in areas where vaccination is not routinely performed (Paillot and others 2006).
Resumo:
Invasive feral swine (Sus scrofa) cause deleterious impacts to ecosystem processes and functioning throughout their worldwide distribution, including forested ecosystems in the United States. Unfortunately, many feral swine damage management programs are conducted in a piecemeal fashion, are not adequately funded, and lack clearly stated or realistic objectives. This review paper identifies damage caused by feral swine to forest resources and presents techniques used to prevent and control feral swine damage. Concluding points related to planning a feral swine damage management program are: (1) the value of using a variety of techniques in an integrated fashion cannot be overstated; (2) there is value in using indices for both feral swine populations and their damage pre and post management activities; (3) innovative technologies will increasing be of value in the pursuit of feral swine damage reduction; and (4) though not appropriate in every situation, there is value in involving the public in feral swine damage management decisions and activities.
Resumo:
This manuscript provides an overview of past wildlife contraception efforts and discusses the current state of research. Two fertility control agents, an avian reproductive inhibitor containing the active ingredient nicarbazin and an immunocontraceptive vaccine, have received regulatory approval with the Environmental Protection Agency and are commercially available in the USA. OvoControl G Contraceptive Bait for Canada Geese and Ovo Control for pigeons are delivered as oral baits. An injectable immunocontraceptive vaccine (GonaCon Immunocontraceptive Vaccine) was registered with the Environmental Protection Agency for use in female white-tailed deer in September 2009. An injectable product (GonaCon Immunocontraceptive Vaccine) is registered for use in female white-tailed deer. Both products are labeled for use in urban/suburban areas where these species are overabundant. Several other compounds are currently being tested for use in wildlife in the USA, Europe, Australia and New Zealand that could have promise in the future. The development and use of reproductive inhibitors for resolving human–wildlife conflicts will depend on a number of factors, including meeting the requirements of regulatory agencies for use in the environment and on the biological and economical feasibility of their use. Use will also be dependent on health and safety issues and on public acceptance of the techniques.
Resumo:
In order to determine potential definitive hosts of the digenetic trematode, Bolbophorus damnificus, two American White Pelicans (Pelecanus erythrorhynchos), two Double-crested Cormorants (Phalacrocorax auritus), two Great Blue Herons (Ardea herodias), and two Great Egrets (Ardea alba) were captured, treated with praziquantel, and fed channel catfish (Ictalurus punctatus) infected with B. damnificus metacercariae. Patent infections of B. damnificus, which developed in both American White Pelicans at 3 days post-infection, were confirmed by the presence of trematode ova in the feces. Mature B. damnificus trematodes were recovered from the intestines of both pelicans at 21 days post-infection, further confirming the establishment of infection. No evidence of B. damnificus infections was observed in the other bird species studied. This study provides further evidence that Double-crested Cormorants, Great Blue Herons, and Great Egrets do not serve as definitive hosts for B. damnificus.
Resumo:
INFLUENZA A virus (IAV) (family Orthomyxoviridae) is a highly infectious respiratory pathogen of birds and mammals, including human beings and horses (Palese and Shaw 2007). The virus is classified into different subtypes based on the antigenic properties of the haemagglutinin (HA) and neuraminidase (NA) proteins. Sixteen HA subtypes (H1 to H16) and nine NA subtypes (N1 to N9) have been identified (Fouchier and others 2005). Two subtypes, H3N8 and H7N7, have been isolated from horses. The H7N7 subtype was first isolated from a horse in Czechoslovakia in 1956 (Prague/56) (Sovinova and others 1958), and the H3N8 subtype was first isolated from a horse in Miami, USA, in 1963 (Waddell and others 1963). The H7N7 subtype has not been isolated from horses for three decades and is presumed to be extinct (Webster 1993). The H3N8 subtype is currently a common cause of disease in horses worldwide. In horses, influenza is characterized by an abrupt onset of pyrexia, depression, coughing and nasal discharge, and is often complicated by secondary bacteria infections that can lead to pneumonia and death (Hannant and Mumford 1996). Although H3N8 is a major cause of morbidity in horses throughout the world, information on the seroprevalence of IAV in horses and other domestic animals in Mexico is limited.
Resumo:
Analytical methods accounting for imperfect detection are often used to facilitate reliable inference in population and community ecology. We contend that similar approaches are needed in disease ecology because these complicated systems are inherently difficult to observe without error. For example, wildlife disease studies often designate individuals, populations, or spatial units to states (e.g., susceptible, infected, post-infected), but the uncertainty associated with these state assignments remains largely ignored or unaccounted for. We demonstrate how recent developments incorporating observation error through repeated sampling extend quite naturally to hierarchical spatial models of disease effects, prevalence, and dynamics in natural systems. A highly pathogenic strain of avian influenza virus in migratory waterfowl and a pathogenic fungus recently implicated in the global loss of amphibian biodiversity are used as motivating examples. Both show that relatively simple modifications to study designs can greatly improve our understanding of complex spatio-temporal disease dynamics by rigorously accounting for uncertainty at each level of the hierarchy.
Resumo:
Raccoons are the reservoir for the raccoon rabies virus variant in the United States. To combat this threat, oral rabies vaccination (ORV) programs are conducted in many eastern states. To aid in these efforts, the genetic structure of raccoons (Procyon lotor) was assessed in southwestern Pennsylvania to determine if select geographic features (i.e., ridges and valleys) serve as corridors or hindrances to raccoon gene flow (e.g., movement) and, therefore, rabies virus trafficking in this physiographic region. Raccoon DNA samples (n = 185) were collected from one ridge site and two adjacent valleys in southwestern Pennsylvania (Westmoreland, Cambria, Fayette, and Somerset counties). Raccoon genetic structure within and among these study sites was characterized at nine microsatellite loci. Results indicated that there was little population subdivision among any sites sampled. Furthermore, analyses using a model-based clustering approach indicated one essentially panmictic population was present among all the raccoons sampled over a reasonably broad geographic area (e.g., sites up to 36 km apart). However, a signature of isolation by distance was detected, suggesting that widths of ORV zones are critical for success. Combined, these data indicate that geographic features within this landscape influence raccoon gene flow only to a limited extent, suggesting that ridges of this physiographic system will not provide substantial long-term natural barriers to rabies virus trafficking. These results may be of value for future ORV efforts in Pennsylvania and other eastern states with similar landscapes.
Resumo:
A previous investigation of the safety of Brucella abortus strain RB51 (sRB51) in various nontarget species suggested that Richardson’s ground squirrels (Spermophilus richardsonii) may develop persistent infections when orally inoculated with the vaccine. In the present study, sRB51, B. abortus strain 19 (s19), and virulent B. abortus strain 9941 (s9941) were administered orally to Richardson’s ground squirrels to further characterize B. abortus infection in this species. Six groups of nongravid ground squirrels were orally inoculated with 6x108 colony forming units (cfu) sRB51 (n=10), 2.5x104 cfu s19 (n=10), 2.5x107 cfu s19 (n=6), 1.3x106 cfu s9941 (n=5), 2.1x108 cfu s9941 (n=5), or vaccine diluent (control; n=4). One of five animals in the lower-dose s19 group and two of three animals in the higher-dose s19 group showed persistence of bacteria in various tissues at 14 wk post-inoculation (PI). At 18 wk PI, one of five animals in the sRB51 group and one of five animals in the high-dose s9941 group were culture positive. Although we did detect some persistence of B. abortus strains at 18 wk, we found no evidence of pathology caused by B. abortus strains in nonpregnant Richardson’s ground squirrels based on clinical signs, gross lesions, and microscopic lesions.
Resumo:
We investigated the efficacy of oral and parenteral Mycobacterium bovis bacille Calmette-Guerin Danish strain 1331 (BCG) in its ability to protect white-tailed deer (Odocoileus virginianus) against disease caused by M. bovis infection. Twenty-two white-tailed deer were divided into four groups. One group (n=5) received 109 colony-forming units (cfu) BCG via a lipid-formulated oral bait; one group (n=5) received 109 cfu BCG in culture directly to the oropharynx, one group (n=6) was vaccinated with 106 cfu BCG subcutaneously, and one group served as a control and received culture media directly to the oropharynx (n=6). All animals were challenged 3 mo after vaccination. Five months postchallenge the animals were examined for lesions. Results indicate that both oral forms of BCG and parenterally administerd BCG offered significant protection against M. bovis challenge as compared to controls. This study suggests that oral BCG vaccination may be a feasible means of controlling bovine tuberculosis in wild white-tailed deer populations.
Resumo:
The pathogenesis of South American and North American myxoma viruses was examined in two species of North American lagomorphs, Sylvilagus nuttallii (mountain cottontail) and Sylvilagus audubonii (desert cottontail) both of which have been shown to have the potential to transmit the South American type of myxoma virus. Following infection with the South American strain (Lausanne, Lu), S. nuttallii developed both a local lesion and secondary lesions on the skin. They did not develop the classical myxomatosis seen in European rabbits (Oryctolagus cuniculus). The infection at the inoculation site did not resolve during the 20-day time course of the trial and contained transmissible virus titres at all times. In contrast, S. audubonii infected with Lu had very few signs of disseminated infection and partially controlled virus replication at the inoculation site. The prototype Californian strain of myxoma virus (MSW) was able to replicate at the inoculation site of both species but did not induce clinical signs of a disseminated infection. In S. audubonii, there was a rapid response to MSW characterized by a massive T lymphocyte infiltration of the inoculation site by day 5. MSW did not reach transmissible titres at the inoculation site in either species. This might explain why the Californian myxoma virus has not expanded its host-range in North America.
Resumo:
Bovine tuberculosis (bovine TB), caused by Mycobacterium bovis, has reemerged in northern Michigan, USA, with detections in white-tailed deer (Odocoileus virginianus) in 1994 and in cattle in 1998. Since then, significant efforts have been directed toward reducing deer densities in the area in the hopes of reducing the bovine TB prevalence rate in deer and eliminating spillover of the disease into cattle. Despite the success of the efforts to reduce deer densities, additional cattle herds have become infected. Other mammals can be infected with M. bovis, and some carnivores and omnivores had been found to be infected with the disease in northern Michigan, USA. We conducted a multiyear surveillance effort to detect bovine TB in wild species of mammals in the Michigan, USA, outbreak area. From 2002 to 2004, tissue samples from 1,031 individual animals of 32 species were collected, processed, and cultured for M. bovis. Only 10 (1.0%) were culture-positive for M. bovis (five raccoons [Procyon lotor], four opossums [Didelphis virginiana], and one grey fox [Urocyon cinereoargenteus]). We also found two raccoons and four opossums to be positive for Mycobacterium avium. We collected 503 environmental samples from cattle farms recently identified as bovine TB positive; none yielded positive M. bovis culture results. Finally, we used infrared cameras to document wildlife use of four barns in the area. Many avian and mammalian species of wildlife were observed, with raccoons being the most commonly observed species. This surveillance study identified no new wildlife species that should be considered significant reservoirs of bovine TB in the outbreak area in northern Michigan, USA. However, the relatively high, apparent bovine TB prevalence rates in some carnivorous and omnivorous species, their relatively long life spans, and their frequent use of barns, suggests that removal of raccoons, opossums, foxes, and coyotes (Canis latrans) should be considered when a newly infected farm is depopulated of cattle.
Resumo:
Myxobolus cerebralis, the cause of whirling disease in salmonids, has dispersed to waters in 25 states within the USA, often by an unknown vector. Its incidence in Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri within the highly protected environment of Yellowstone Lake, Yellowstone National Park, is a prime example. Given the local abundances of piscivorous birds, we sought to clarify their potential role in the dissemination of M. cerebralis. Six individuals from each of three bird species (American white pelican Pelecanus erythrorhynchos, double-crested cormorant Phalacrocorax auritus, and great blue heron Ardea herodias) were fed known-infected or uninfected rainbow trout O. mykiss. Fecal material produced during 10-d periods before and after feeding was collected to determine whether M. cerebralis could be detected and, if so, whether it remained viable after passage through the gastrointestinal tract of these birds. For all (100%) of the nine birds fed known-infected fish, fecal samples collected during days 1–4 after feeding tested positive for M. cerebralis by polymerase chain reaction. In addition, tubificid worms Tubifex tubifex that were fed fecal material from known-infected great blue herons produced triactinomyxons in laboratory cultures, confirming the persistent viability of the parasite. No triactinomyxons were produced from T. tubifex fed fecal material from known-infected American white pelicans or double-crested cormorants, indicating a potential loss of parasite viability in these species. Great blue herons have the ability to concentrate and release viable myxospores into shallow-water habitats that are highly suitable for T. tubifex, thereby supporting a positive feedback loop in which the proliferation of M. cerebralis is enhanced. The presence of avian piscivores as an important component of aquatic ecosystems should continue to be supported. However, given the distances traveled by great blue herons between rookeries and foraging areas in just days, any practices that unnaturally attract them may heighten the probability of M. cerebralis dispersal and proliferation within the Greater Yellowstone Ecosystem.
Resumo:
Feral dogs have been documented in all 50 states and estimates of damage in the U.S. from these animals amount to >$620 million annually. In Texas alone, it is estimated that over $5 million in damage to livestock annually can be attributed to feral dogs. We reviewed national statistics on feral dog damage reported to USDA, APHIS, Wildlife Services for a 10-year period from 1997 through 2006. Damage by feral dogs crossed multiple resource categories (e.g., agriculture, natural resources); some examples of damage include killing and affecting the behavior and habitat use of native wildlife; killing and maiming livestock; and their role as disease vectors to wildlife, domestic animals, and humans. We review the role of dog damage in the U.S., synthesize the amount of damage between resource categories (agriculture, human health and safety, disease, and natural resources), and report trends in dog damage during the 10-year period. Results showed an increase in dog damage across all resource categories indicating the importance of management.
Resumo:
The nocturnal, terrestrial frog Eleutherodactylus coqui, known as the Coqui, is endemic to Puerto Rico and was accidentally introduced to Hawai‘i via nursery plants in the late 1980s. Over the past two decades E. coqui has spread to the four main Hawaiian Islands, and a major campaign was launched to eliminate and control it. One of the primary reasons this frog has received attention is its loud mating call (85–90 dB at 0.5 m). Many homeowners do not want the frogs on their property, and their presence has influenced housing prices. In addition, E. coqui has indirectly impacted the floriculture industry because customers are reticent to purchase products potentially infested with frogs. Eleutherodactylus coqui attains extremely high densities in Hawai‘i, up to 91,000 frogs ha-1, and can reproduce year-round, once every 1–2 months, and become reproductive around 8–9 months. Although the Coqui has been hypothesized to potentially compete with native insectivores, the most obvious potential ecological impact of the invasion is predation on invertebrate populations and disruption of associated ecosystem processes. Multiple forms of control have been attempted in Hawai‘i with varying success. The most successful control available at this time is citric acid. Currently, the frog is established throughout the island of Hawai‘i but may soon be eliminated on the other Hawaiian Islands via control efforts. Eradication is deemed no longer possible on the island of Hawai‘i.
Resumo:
There is a growing recognition among wildlife managers that focusing management on wildlife often provides a temporary fix to human–wildlife conflicts, whereas changing human behavior can provide long-term solutions. Human dimensions research of wildlife conflicts frequently focuses on stakeholders’ characteristics, problem identification, and acceptability of management, and less frequently on human behavior and evaluation of management actions to change that behavior. Consequently, little information exists to assess overall success of management. We draw on our experience studying human–bear conflicts, and argue for more human dimensions studies that focus on change in human behavior to measure management success. We call for help from social scientists to conduct applied experiments utilizing two methods, direct observation and self-reported data, to measure change in behavior. We are optimistic these approaches will help fill the managers’ tool box and lead to better integration of human dimensions into human–wildlife conflict management.