25 resultados para Bird banding
Resumo:
In Arkansas, blackbirds are responsible for appreciable damage to rice, grain sorghum, oats, wheat, rye, and corn. By far, the greatest damage is to rice. As is shown in the following table, the losses to rice producers amounted to an estimated $3,049,055 in 1968, the last year that a survey was made. Nearly two-thirds (63%) of this loss was to standing rice destroyed and to the cost of bird control measure in standing rice. The remaining losses ($2,140,320 ) are to seeding or to efforts to control bird depredations to new seeding, (see Table 1). Blackbird damage to grain sorghum and corn was mostly to standing grain; that to oats, wheat and rye, to seeding, although there is occasional damage to standing grain. Additional problems are caused by blackbirds in feed lots. The total losses to Arkansas agricultural producers due to blackbirds in 1968 was about $3,500,000. Bird damage in a specific locality and on specific crops seems to vary in intensity from year to year. However, surveys during the past ten years suggest a fairly consistent level of total damage state-wide. The damage in 1968-and I believe in 1969—was somewhat lighter than we have come to expect from past exper¬ience. (See table 2.) On a per acre basis the damage in 1968 showed a considerable decline when compared to previous years. A part of this decline is probably a temporary situation. Some of the decline in losses to rice and grain sorghum, however, are due to changes in varieties, such as development of bird-resistant milo, and to changes in cultural methods. Further appreciable reductions due to changes in these factors seem unlikely, (see table 3.) Since rice producers sustain the greatest losses to birds, they have generated the greatest demand for bird control programs. Three species are responsible for most of the damage to rice. They are the red-winged blackbird, common grackle and brown-headed cowbird. These birds have created problems for rice producers since the first successful rice crop was grown near Lonoke, Arkansas, in 1904.
Resumo:
"How large a sample is needed to survey the bird damage to corn in a county in Ohio or New Jersey or South Dakota?" Like those in the Bureau of Sport Fisheries and Wildlife and the U.S.D.A. who have been faced with a question of this sort we found only meager information on which to base an answer, whether the problem related to a county in Ohio or to one in New Jersey, or elsewhere. Many sampling methods and rates of sampling did yield reliable estimates but the judgment was often intuitive or based on the reasonableness of the resulting data. Later, when planning the next study or survey, little additional information was available on whether 40 samples of 5 ears each or 5 samples of 200 ears should be examined, i.e., examination of a large number of small samples or a small number of large samples. What information is needed to make a reliable decision? Those of us involved with the Agricultural Experiment Station regional project concerned with the problems of bird damage to crops, known as NE-49, thought we might supply an ans¬wer if we had a corn field in which all the damage was measured. If all the damage were known, we could then sample this field in various ways and see how the estimates from these samplings compared to the actual damage and pin-point the best and most accurate sampling procedure. Eventually the investigators in four states became involved in this work1 and instead of one field we were able to broaden the geographical base by examining all the corn ears in 2 half-acre sections of fields in each state, 8 sections in all. When the corn had matured well past the dough stage, damage on each corn ear was assessed, without removing the ear from the stalk, by visually estimating the percent of the kernel surface which had been destroyed and rating it in one of 5 damage categories. Measurements (by row-centimeters) of the rows of kernels pecked by birds also were made on selected ears representing all categories and all parts of each field section. These measurements provided conversion factors that, when fed into a computer, were applied to the more than 72,000 visually assessed ears. The machine now had in its memory and could supply on demand a map showing each ear, its location and the intensity of the damage.
Resumo:
Bird-aircraft strikes at the Atlantic City International Airport (ACY) increased from 18 in 1989 to 37 in 1990. The number of bird-aircraft strikes involving gulls (Larus spp.) during this time rose from 6 to 27, a 350% increase. The predominant species involved in bird strikes was the laughing gull (L. atricilla). Pursuant to an interagency agreement between the U.S. Department of Transportation (USDOT), Federal Aviation Administration (FAA) and the U.S. Department of Agriculture (USDA)l Animal and Plant Health Inspection Service (APHIS)/Animal Damage Control (ADC), ADC established a Emergency/Experimental Bird Hazard Reduction Force (BHFF) at ACY in 1991. An Environmental Assessment (EA) and Finding of No Significant Impact (FONSI) for the 1991 Emergency/Experimental BHRF was executed and signed by the FAA on 19 May 1991. The BHRF was adopted at this time by the FAA Technical Center as an annual program to reduce bird strikes at ACY. The BHRF goals are to minimize or eliminate the incidence of bird-aircraft strikes and runway closures due to increased bird activities. A BHRF team consisting of ADC personnel patrolled ACY for 95 days from 26 May until 28 August 1992, for a total of 2,949 person-hours. The BHRF used a combination of pyrotechnics, amplified gull distress tapes and live ammunition to harass gulls away from the airport from dawn to dusk. Gullaircraft strikes were reduced during BHRF operations in 1992 by 86% compared to gull strikes during summer months of 1990 when there was not a BHRF team. Runway closures due to bird activity decreased 100% compared to 1990 and 1991 closures. The BHRF should continue at ACY as long as birds are a threat to human safety and aircraft operations.
Resumo:
In worldwide aviation operations, bird collisions with aircraft and ingestions into engine inlets present safety hazards and financial loss through equipment damage, loss of service and disruption to operations. The problem is encountered by all types of aircraft, both military and commercial. Modern aircraft engines have achieved a high level of reliability while manufacturers and users continually strive to further improve the safety record. A major safety concern today includes common-cause events which involve significant power loss on more than one engine. These are externally-inflicted occurrences, with the most frequent being encounters with flocks of birds. Most frequently these encounters occur during flight operations in the area on or near airports, near the ground instead of at cruise altitude conditions. This paper focuses on the increasing threat to aircraft and engines posed by the recorded growth in geese populations in North America. Service data show that goose strikes are increasing, especially in North America, consistent with the growing resident geese populations estimated by the United States Department of Agriculture (USDA). Airport managers, along with the governmental authorities, need to develop a strategy to address this large flocking bird issue. This paper also presents statistics on the overall status of the bird threat for birds of all sizes in North America relative to other geographic regions. Overall, the data shows that Canada and the USA have had marked improvements in controlling the threat from damaging birds - except for the increase in geese strikes. To reduce bird ingestion hazards, more aggressive corrective measures are needed in international air transport to reduce the chances of serious incidents or accidents from bird ingestion encounters. Air transport authorities must continue to take preventative and avoidance actions to counter the threat of birdstrikes to aircraft. The primary objective of this paper is to increase awareness of, and focus attention on, the safety hazards presented by large flocking birds such as geese. In the worst case, multiple engine power loss due to large bird ingestion could result in an off-airport forced landing accident. Hopefully, such awareness will prompt governmental regulatory agencies to address the hazards associated with growing populations of geese in North America.
Resumo:
Certain fungi have been found frequently as saprophytes in areas containing large amounts of bird excreta. These fungi have the ability to survive, multiply, and cause disease once they have entered a host. Two of these are Crypto-coccus neoformans and Histoplasma capsulatum. Both may easily become airborne and be disseminated throughout an area by the prevailing winds. C. neo-formans is commonly isolated from the excreta of pigeon habitats, and in turn has been associated with clinical cases of cryptococcosis, while blackbird roosts, harboring H. capsulatum, have been responsible for several outbreaks of histoplasmosis. When either of these fungi have become established in nature, the sites may become foci for infection and epidemics may occur if the sites are disturbed. This has led to investigation of these organisms with respect to: 1) the frequency of isolation of H. capsulatum from the soil beneath blackbird roosts in a histoplasmosis endemic area; 2) the infectivity of undisturbed roosts positive for H. capsulatum; and 3) the effectiveness of chemical decontamination of areas containing C. neoformans or H. capsulatum.
Resumo:
I guess the impetus for laws in our state, really was the action of the city of Boston in 1963, when the Parks and Recreation Department felt that it was time to do something about massive populations of pigeons on the Boston Commons and in the city. The Parks Department came to our agency to find out what could be done. We immediately found as a result of a reorganization and recodification of the laws some 20 years before, that it was illegal to use or apply poisons for the purpose of killing any birds or mammals in the Commonwealth of Massachusetts. Property owners were given the privilege to destroy animals that were doing damage to their property, but only through mechanical means, certainly not by the use of toxicants. We helped the city of Boston draft a bill in 1963, which allowed our agency, the Division of Fisheries and Game, the agency responsible for all wildlife species in the state, the opportunity to issue certain permits for the use of poison, giving full authority to the director of Fisheries and Game with, of course, approval of my board. This allowed certain discretion on our part.
Resumo:
Our chairman has wisely asked that we not spend all of our time here telling each other about our bird problems. In the Southeast, our difficulties with blackbirds are based upon the same bird habits that cause trouble elsewhere: they flock, they roost and they eat, generally taking advantage of the readily available handouts that today's agricul¬tural practices provide. Those of us on the receiving end of these de¬predations of course think that damage in our own particular area must be far the worst, anywhere. Because of the location of our meeting place today, perhaps it is worthwhile to point out that a report prepared by our Bureau's Washington office this year outlined the problem of blackbird damage to corn in the Middle Atlantic States, the Great Lakes Region and in Florida, and then followed with this statement--"An equally serious problem occurs in rice and grain sorghum fields of Arkansas, Mississippi, Texas and Louisiana." The report also men¬tions that the largest winter concentrations of blackbirds are found in the lower Mississippi Valley. Our 1963-64 blackbird-starling survey showed 43 principal roosts totaling approximately 100 million of these birds in Virginia, the Carolinas, Georgia, Alabama, Tennessee and Kentucky. We have our own birds during the summer plus the "tourist" birds from up here and elsewhere during the winter, and all of these birds must eat, so suffice it to say that we, too, have some bird problems in the Southeast. I'm sure you're more interested in what we're doing about them. To keep this in perspective also, please bear in mind that against the magnitude of these problems, our blackbird control research staff at Gainesville consists of 3 biologists, 1 biochemist and one technician. And unfortunately, none of us happens to be a miracle worker. I think, though, we have made great progress toward solving the bird problems in the Southeast for the man-hours that have been expended in this re¬search. My only suggestion to those who are impatient about not having more answers is that they examine the budget that has been set up for this work. Only then could we intelligently discuss what might be expected as a reasonable rate of research progress. When I think about what we have accomplished in a short span of time, with very small expenditure, I can assure you that I am very proud of our small research crew at Gainesville--and I say this quite sincerely. At the Gainesville station, we work under two general research approaches to the bird damage problem. These projects have been assigned to us. The first is research on management of birds, particularly blackbirds and starlings destructive to crops or in feedlots, and, secondly, the development and the adaptation of those chemical compounds found to be toxic to birds but relatively safe to mammals. These approaches both require laboratory and field work that is further subdivided into several specific research projects. Without describing the details of these now, I want to mention some of our recent results. From the results, I'm sure you will gather the general objectives and some of the procedures used.
Resumo:
It may be useful to review some of the considerations that go into recommendations concerning bird management. Later I will make some comments concerning specific methods and devices being used in or promoted for bird control work regardless of whether or not they are new. Members of the National Pest Control Association provide a variety of services, such as fumigation, termite control and general pest control which includes rodent control. There are eight such categories listed in our roster, but only one member in five provides every service listed. Bird control is a rather recent development and is the newest category of service to be listed in the NPCA roster where it appeared for the first time in 1959. As of September 1, 1966, 45% of our members' offices indicated that they were prepared to offer bird control service. Less than 40% did so in 1964. Why is it that more of our members do not declare themselves as ready to do bird control work? I believe the most common answer you would find is that bird control is not yet sufficiently established that they can provide a service comparable in quality to that which is provided against termites or cockroaches or rats. Our members simply do not want to jeopardize their reputation on methods that are not certain or are too complex. Others recognize the emotional reaction evidenced by much of the population concerning control of birds and do not want to become involved in work that might offend some of their clientele. Still others simply do not agree that birds are their responsibility.
Resumo:
As a pest control industry, we are interested in bird control, especially in areas of residence, commercial buildings, food plants, mills and elevators, commercial feed lots, farms, and even area wide controls in some of our cities. We run into all kinds of problems; I suppose you men do, too.
Resumo:
The Canadian Wildlife Service has had twenty-five years experience with the problem caused by bird contacts with aircraft. I experienced my first bird strike, while flying as an observer on a waterfowl survey in August, 1940. Officers of the Service investigated bird problems at airports at Yarmouth, Nova Scotia, and Cartierville, Quebec, in the late 1940's. Those incidents involving gulls and low speed piston-engined aircraft caused minor damage to the aircraft but considerable disturbance to the operators. As aircraft speeds increased and airports became more numerous and busier the problem increased in extent and complexity. By 1960 it was apparent that the problem would grow worse and that work should be directed toward reducing the number of incidents. In 1960 an electra aircraft crashed at Boston, Massachusetts, killing 61 passengers. Starlings were involved in the engine malfunction which preceded the crash. In November, 1962 a viscount aircraft was damaged by collision with two swans between Baltimore and Washington and crashed with a loss of 17 lives. Those incidents focused attention on the bird hazard problem in the United States.