29 resultados para wavelength-division multiplexing (WDM)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bandwidth requirements of the Internet are increasing every day and there are newer and more bandwidth-thirsty applications emerging on the horizon. Wavelength division multiplexing (WDM) is the next step towards leveraging the capabilities of the optical fiber, especially for wide-area backbone networks. The ability to switch a signal at intermediate nodes in a WDM network based on their wavelengths is known as wavelength-routing. One of the greatest advantages of using wavelength-routing WDM is the ability to create a virtual topology different from the physical topology of the underlying network. This virtual topology can be reconfigured when necessary, to improve performance. We discuss the previous work done on virtual topology design and also discuss and propose different reconfiguration algorithms applicable under different scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As wavelength-division multiplexing (WDM) evolves towards practical applications in optical transport networks, waveband switching (WBS) has been introduced to cut down the operational costs and to reduce the complexities and sizes of network components, e.g., optical cross-connects (OXCs). This paper considers the routing, wavelength assignment and waveband assignment (RWWBA) problem in a WDM network supporting mixed waveband and wavelength switching. First, the techniques supporting waveband switching are studied, where a node architecture enabling mixed waveband and wavelength switching is proposed. Second, to solve the RWWBA problem with reduced switching costs and improved network throughput, the cost savings and call blocking probabilities along intermediate waveband-routes are analyzed. Our analysis reveals some important insights about the cost savings and call blocking probability in relation to the fiber capacity, the candidate path, and the traffic load. Third, based on our analysis, an online integrated intermediate WBS algorithm (IIWBS) is proposed. IIWBS determines the waveband switching route for a call along its candidate path according to the node connectivity, the link utilization, and the path length information. In addition, the IIWBS algorithm is adaptive to real network applications under dynamic traffic requests. Finally, our simulation results show that IIWBS outperforms a previous intermediate WBS algorithm and RWA algorithms in terms of network throughput and cost efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the important issues in establishing a fault tolerant connection in a wavelength division multiplexing optical network is computing a pair of disjoint working and protection paths and a free wavelength along the paths. While most of the earlier research focused only on computing disjoint paths, in this work we consider computing both disjoint paths and a free wavelength along the paths. The concept of dependent cost structure (DCS) of protection paths to enhance their resource sharing ability was proposed in our earlier work. In this work we extend the concept of DCS of protection paths to wavelength continuous networks. We formalize the problem of computing disjoint paths with DCS in wavelength continuous networks and prove that it is NP-complete. We present an iterative heuristic that uses a layered graph model to compute disjoint paths with DCS and identify a free wavelength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of survivable lightpath provisioning in wavelength-division-multiplexing (WDM) mesh networks, taking into consideration optical-layer protection and some realistic optical signal quality constraints. The investigated networks use sparsely placed optical–electrical–optical (O/E/O) modules for regeneration and wavelength conversion. Given a fixed network topology with a number of sparsely placed O/E/O modules and a set of connection requests, a pair of link-disjoint lightpaths is established for each connection. Due to physical impairments and wavelength continuity, both the working and protection lightpaths need to be regenerated at some intermediate nodes to overcome signal quality degradation and wavelength contention. In the present paper, resource-efficient provisioning solutions are achieved with the objective of maximizing resource sharing. The authors propose a resource-sharing scheme that supports three kinds of resource-sharing scenarios, including a conventional wavelength-link sharing scenario, which shares wavelength links between protection lightpaths, and two new scenarios, which share O/E/O modules between protection lightpaths and between working and protection lightpaths. An integer linear programming (ILP)-based solution approach is used to find optimal solutions. The authors also propose a local optimization heuristic approach and a tabu search heuristic approach to solve this problem for real-world, large mesh networks. Numerical results show that our solution approaches work well under a variety of network settings and achieves a high level of resource-sharing rates (over 60% for O/E/O modules and over 30% for wavelength links), which translate into great savings in network costs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, there has been growing interest in developing optical fiber networks to support the increasing bandwidth demands of multimedia applications, such as video conferencing and World Wide Web browsing. One technique for accessing the huge bandwidth available in an optical fiber is wavelength-division multiplexing (WDM). Under WDM, the optical fiber bandwidth is divided into a number of nonoverlapping wavelength bands, each of which may be accessed at peak electronic rates by an end user. By utilizing WDM in optical networks, we can achieve link capacities on the order of 50 THz. The success of WDM networks depends heavily on the available optical device technology. This paper is intended as a tutorial on some of the optical device issues in WDM networks. It discusses the basic principles of optical transmission in fiber and reviews the current state of the art in optical device technology. It introduces some of the basic components in WDM networks, discusses various implementations of these components, and provides insights into their capabilities and limitations. Then, this paper demonstrates how various optical components can be incorporated into WDM optical networks for both local and wide-area applications. Last, the paper provides a brief review of experimental WDM networks that have been implemented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emergence of wavelength-division multiplexing (WDM) technology provides the capability for increasing the bandwidth of synchronous optical network (SONET) rings by grooming low-speed traffic streams onto different high-speed wavelength channels. Since the cost of SONET add–drop multiplexers (SADM) at each node dominates the total cost of these networks, how to assign the wavelength, groom the traffic, and bypass the traffic through the intermediate nodes has received a lot of attention from researchers recently. Moreover, the traffic pattern of the optical network changes from time to time. How to develop dynamic reconfiguration algorithms for traffic grooming is an important issue. In this paper, two cases (best fit and full fit) for handling reconfigurable SONET over WDM networks are proposed. For each approach, an integer linear programming model and heuristic algorithms (TS-1 and TS-2, based on the tabu search method) are given. The results demonstrate that the TS-1 algorithm can yield better solutions but has a greater running time than the greedy algorithm for the best fit case. For the full fit case, the tabu search heuristic yields competitive results compared with an earlier simulated annealing based method and it is more stable for the dynamic case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Survivable traffic grooming (STG) is a promising approach to provide reliable and resource-efficient multigranularity connection services in wavelength-division-multiplexing (WDM) optical networks. In this paper, we study the STG problem in WDM mesh optical networks employing path protection at the connection level. Both dedicated-protection and shared-protection schemes are considered. Given network resources, the objective of the STG problem is to maximize network throughput. To enable survivability under various kinds of single failures, such as fiber cut and duct cut, we consider the general shared-risklink- group (SRLG) diverse routing constraints. We first resort to the integer-linear-programming (ILP) approach to obtain optimal solutions. To address its high computational complexity, we then propose three efficient heuristics, namely separated survivable grooming algorithm (SSGA), integrated survivable grooming algorithm (ISGA), and tabu-search survivable grooming algorithm (TSGA). While SSGA and ISGA correspond to an overlay network model and a peer network model, respectively, TSGA further improves the grooming results from SSGA and ISGA by incorporating the effective tabu-search (TS) method. Numerical results show that the heuristics achieve comparable solutions to the ILP approach, which uses significantly longer running times than the heuristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate waveband switching (WBS) with different grouping strategies in wavelength-division multiplexing (WDM) mesh networks. End-to-end waveband switching (ETEWBS) and same-destination-intermediate waveband switching (SD-IT-WBS) are analyzed and compared in terms of blocking probability and cost savings. First, an analytical model for ETEWBS is proposed to determine the network blocking probability in a mesh network. For SD-IT-WBS, a simple waveband switching algorithm is presented. An analytical model to determine the network blocking probability is proposed for SD-IT-WBS based on the algorithm. The analytical results are validated by comparing with simulation results. Both results match well and show that ETE-WBS slightly outperforms SD-IT-WBS in terms of blocking probability. On the other hand, simulation results show that SD-IT-WBS outperforms ETE-WBS in terms of cost savings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the problem of waveband switching (WBS) in a wavelength-division multiplexing (WDM) mesh network with dynamic traffic requests. To solve the WBS problem in a homogeneous dynamic WBS network, where every node is a multi-granular optical cross-connect (MG-OXC), we construct an auxiliary graph. Based on the auxiliary graph, we develop two heuristic on-line WBS algorithms with different grouping policies, namely the wavelength-first WBS algorithm based on the auxiliary graph (WFAUG) and the waveband-first WBS algorithm based on the auxiliary graph (BFAUG). Our results show that the WFAUG algorithm outperforms the BFAUG algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lightpath scheduling is an important capability in next-generation wavelength-division multiplexing (WDM) optical networks to reserve resources in advance for a specified time period while provisioning end-to-end lightpaths. In this study, we propose an approach to support dynamic lightpath scheduling in such networks. To minimize blocking probability in a network that accommodates dynamic scheduled lightpath demands (DSLDs), resource allocation should be optimized in a dynamic manner. However, for the network users who desire deterministic services, resources must be reserved in advance and guaranteed for future use. These two objectives may be mutually incompatible. Therefore, we propose a two-phase dynamic lightpath scheduling approach to tackle this issue. The first phase is the deterministic lightpath scheduling phase. When a lightpath request arrives, the network control plane schedules a path with guaranteed resources so that the user can get a quick response with the deterministic lightpath schedule. The second phase is the lightpath re-optimization phase, in which the network control plane re-provisions some already scheduled lightpaths. Experimental results show that our proposed two-phase dynamic lightpath scheduling approach can greatly reduce WDM network blocking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lightpath scheduling is an important capability in next-generation wavelength-division multiplexing (WDM) optical networks to reserve resources in advance for a specified time period while provisioning end-to-end lightpaths. In a dynamic environment, the end user requests for dynamic scheduled lightpath demands (D-SLDs) need to be serviced without the knowledge of future requests. Even though the starting time of the request may be hours or days from the current time, the end-user however expects a quick response as to whether the request could be satisfied. We propose a two-phase approach to dynamically schedule and provision D-SLDs. In the first phase, termed the deterministic lightpath scheduling phase, upon arrival of a lightpath request, the network control plane schedules a path with guaranteed resources so that the user can get a quick response with a deterministic lightpath schedule. In the second phase, termed the lightpath re-optimization phase, we re-provision some already scheduled lightpaths to re-optimize for improving network performance. We study two reoptimization scenarios to reallocate network resources while maintaining the existing lightpath schedules. Experimental results show that our proposed two-phase dynamic lightpath scheduling approach can greatly reduce network blocking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Survivable traffic grooming (STG) is a promising approach to provide reliable and resource-efficient multigranularity connection services in wavelength division multiplexing (WDM) optical networks. In this paper, we study the STG problem in WDM mesh optical networks employing path protection at the connection level. Both dedicated protection and shared protection schemes are considered. Given the network resources, the objective of the STG problem is to maximize network throughput. To enable survivability under various kinds of single failures such as fiber cut and duct cut, we consider the general shared risk link group (SRLG) diverse routing constraints. We first resort to the integer linear programming (ILP) approach to obtain optimal solutions. To address its high computational complexity, we then propose three efficient heuristics, namely separated survivable grooming algorithm (SSGA), integrated survivable grooming algorithm (ISGA) and tabu search survivable grooming algorithm (TSGA). While SSGA and ISGA correspond to an overlay network model and a peer network model respectively, TSGA further improves the grooming results from SSGA and ISGA by incorporating the effective tabu search method. Numerical results show that the heuristics achieve comparable solutions to the ILP approach, which uses significantly longer running times than the heuristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emergence of Wavelength Division Multiplexing (WDM) technology provides the capability for increasing the bandwidth of Synchronous Optical Network (SONET) rings by grooming low-speed traffic streams onto different high-speed wavelength channels. Since the cost of SONET add-drop multiplexers (SADM) at each node dominates the total cost of these networks, how to assign the wavelength, groom in the traffic and bypass the traffic through the intermediate nodes has received a lot of attention from researchers recently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical networks provide a new dimension to meet the demands of exponentially growing traffic. Optical packet switching requires a good switch architecture, which eliminates the O/E/O conversion as much as possible. Wavelength Division Multiplexing (WDM) provides a breakthrough to exploit the huge bandwidth of the optical fiber. Different applications have different requirements, which necessitate employing differentiated services. This paper presents the idea of a priority-based λ-scheduler, where the packets are differentiated into different classes and services are provided accordingly. For example, class 0 can correspond to non real time applications like email and ftp, while class 1 can correspond to real-time audio and video communications. The architecture is based on that of the λ-scheduler and hence it has the added advantage of reduced component cost by using WDM internally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data-intensive Grid applications require huge data transfers between grid computing nodes. These computing nodes, where computing jobs are executed, are usually geographically separated. A grid network that employs optical wavelength division multiplexing (WDM) technology and optical switches to interconnect computing resources with dynamically provisioned multi-gigabit rate bandwidth lightpath is called a Lambda Grid network. A computing task may be executed on any one of several computing nodes which possesses the necessary resources. In order to reflect the reality in job scheduling, allocation of network resources for data transfer should be taken into consideration. However, few scheduling methods consider the communication contention on Lambda Grids. In this paper, we investigate the joint scheduling problem while considering both optical network and computing resources in a Lambda Grid network. The objective of our work is to maximize the total number of jobs that can be scheduled in a Lambda Grid network. An adaptive routing algorithm is proposed and implemented for accomplishing the communication tasks for every job submitted in the network. Four heuristics (FIFO, ESTF, LJF, RS) are implemented for job scheduling of the computational tasks. Simulation results prove the feasibility and efficiency of the proposed solution.