30 resultados para endangered bird
Resumo:
Most species of baleen whales were subject to intensive overexploitation by commercial whaling in this and previous centuries, and many populations were reduced to small fractions of their original sizes. Here, we review the status of baleen whale stocks, with an emphasis on those that are known or thought to be critically endangered. Current data suggest that, of the various threats potentially affecting baleen whales, only entanglement in fishing gear and ship strikes may be significant at the population level, and then only in those populations which are already at critically low abundance. The impact of some problems (vessel harassment, and commercial or aboriginal whaling) is at present probably minor. For others (contaminants, habitat degradation, disease), existing data either indicate no immediate cause for concern, or are insufficient to permit an assessment. While the prospect for many baleen whales appears good, there are notable exceptions; populations that are of greatest concern are those suffering from low abundance and associated problems, including (in some cases) anthropogenic mortality. These include: all Northern Right Whales Eubalaena glacialis, Bowhead Whales Balaena mysticetus of the Okhotsk Sea and various eastern Arctic populations, western Gray Whales Eschrichtius robustus, and probably many Blue Whale Balaenoptera musculus populations. We review the status of these populations and, where known, the issues potentially affecting their recovery. Although Humpback Whales Megaptera novaeangliae and Southern Right Whales Eubalaena australis were also heavily exploited by whaling, existing data indicate strong recovery in most studied populations of these species.
Resumo:
Townsend’s big-eared bat, Corynorhinus townsendii, is distributed broadly across western North America and in two isolated, endangered populations in central and eastern United States. There are five subspecies of C. townsendii; C. t. pallescens, C. t. australis, C. t. townsendii, C. t. ingens, and C. t. virginianus with varying degrees of concern over the conservation status of each. The aim of this study was to use mitochondrial and microsatellite DNA data to examine genetic diversity, population differentiation, and dispersal of three C. townsendii subspecies. C. t. virginianus is found in isolated populations in the eastern United States and was listed as endangered under the Endangered Species Act in 1979. Concern also exists about declining populations of two western subspecies, C. t. pallescens and C. t. townsendii. Using a comparative approach, estimates of the genetic diversity within populations of the endangered subspecies, C. t. virginianus, were found to be significantly lower than within populations of the two western subspecies. Further, both classes of molecular markers revealed significant differentiation among regional populations of C. t. virginianus with most genetic diversity distributed among populations. Genetic diversity was not significantly different between C. t. townsendii and C. t. pallescens. Some populations of C. t. townsendii are not genetically differentiated from populations of C. t. pallescens in areas of sympatry. For the western subspecies gene flow appears to occur primarily through male dispersal. Finally, geographic regions representing significantly differentiated and genetically unique populations of C. townsendii virginianus are recognized as distinct evolutionary significant units.
Resumo:
As the methods-development arm of the U.S. Department of Agriculture’s Wildlife Services program, the National Wildlife Research Center (NWRC) is charged with developing tools and information for protecting agriculture, human health and safety, and property from problems caused by wildlife, including birds. Increasingly the NWRC is being asked to provide basic ecological information on the population status of various bird species, and its role is expanding from a reactive one of providing management options to that of predicting long-term implications of various management actions. This paper describes several areas of research by NWRC scientists to address population-level questions in support of WS mission.
Resumo:
The wetlands of south-central Nebraska’s Rainwater Basin region are considered of international importance as a habitat for millions of migratory birds, but are being endangered by agricultural practices. The Rainwater Basin extends across 17 counties and covers 4,000 square miles. The purpose of this study was to assemble baseline chemical data for several representative wetlands across the Rainwater Basin region, and determine the use of these chemical data for investigating groundwater recharge. Eight representative wetlands were chosen across the Rainwater Basin to monitor surface and groundwater chemistry. At each site, a shallow well and deep well were installed and sampled once in the summer of 2009 and again in the spring of 2010. Wetland surface water was sampled monthly from April, 2009 to May, 2010. Waters were analyzed for major ions, nutrients, pesticides and oxygen-18 and deuterium isotopes at the University of Nebraska Water Sciences Laboratory. Geochemical analysis of surface waters presents a range of temporal and spatial variations. Wetlands had variable water volumes, isotopic compositions, ion chemistries and agricultural contaminant levels throughout the year and, except for a few trends, theses variations cannot be predicted with certainty year-to-year or wetland-to-wetland. Isotopic compositions showed evaporation was a contributor to water loss, and thus, did impact water chemistry. Surface water nitrate concentrations ranged from <0.10 to 4.04 mg/L. The nitrate levels are much higher in the groundwater, ranging from <0.10 to 18.4 mg/L, and are of concern because they are found above the maximum contaminant level (MCL) of 10 mg/L. Atrazine concentrations in surface waters ranged from <0.05 to 10.3 ppb. Groundwater atrazine concentrations ranged from <0.05 to 0.28 ppb. The high atrazine concentrations in surface waters are of concern as they are above the MCL of 3 ppb, and the highest levels occur during the spring bird migration. Most sampled groundwaters had detectable tritium indicating a mix of modern (<5 to 10 years old) and submodern (older than 1950s) recharge. The groundwater also had differences in chemical and isotope composition, and in some cases, increased nitrate concentrations, between the two sampling periods. Modern groundwater tritium ages and changes in groundwater chemical and isotopic compositions may indicate connections with surface waters in the Rainwater Basin.
Resumo:
In 1986, the U.S. Environmental Protection Agency (EPA) initiated an effort to comply more fully with the Endangered Species Act. This effort became their "Endangered Species Protection Program." The possibility of such a program was forecast in 1982 when Donald A. Spencer gave a presentation to the Tenth Vertebrate Pest Conference on "Vertebrate Pest Management and Changing Times." This paper focuses on current plans for implementing the EPA's Endangered Species Protection Program as it relates to the USDA Forest Service. It analyzes the potential effects this program will have on the agency, using the pocket gopher (Thomomys spp.), strychnine, and the grizzly bear (Ursus arctos horribilis) as examples of an affected pest, pesticide, and predator.
Resumo:
We are living in a day of change. Environmental awareness is a part of our everyday life in a way unprecedented in history. The courts, in their infinite wisdom, have initiated the joint and several liability (deep pocket) rules that make everyone at risk in almost all situations. Bird management programs, by their very nature, are extremely sensitive. Any project, if not evaluated, planned, carried out, and documented properly can result in adverse regulatory agency action, bad publicity, and even fines or lawsuits. Proper photographic documentation can play a vital part in helping to provide the necessary records to help prevent problems and/or defend yourself in case of lawsuit or regulatory action. In the preparation of this paper, we surveyed state pesticide lead agencies, state Department of Conservation (Fish and Wildlife) agencies, some U.S. Fish and Wildlife Law Enforcement personnel, and several individuals to get their reaction to and their comments about this concept of supplemental recordkeeping. Of those responding, a majority thought the concept of supplemental photographic recordkeeping would be an asset to individuals and organi¬zations conducting bird management projects.
Resumo:
Airports worldwide are at a disadvantage when it comes to being able to spot birds and warn aircrews about the location of flocks either on the ground or close to the airfield. Birds simply cannot be easily seen during the day and are nearly invisible targets for planes at night or during low visibility. Thermal imaging (infrared) devices can be used to allow ground and tower personnel to pinpoint bird locations day or night, thus giving the airport operators the ability to launch countermeasures or simply warn the aircrews. This technology is available now, though it has been predominately isolated to medical and military system modifications. The cost of these devices has dropped significantly in recent years as technology, capability, and availability have continued to increase. Davison Army Airfield (DAAF), which is located about 20 miles south of Ronald Reagan National Airport in Washington, DC, is the transient home to many bird species including an abundance of ducks, seagulls, pigeons, and migrating Canadian geese. Over the past few years, DAAF implemented a variety of measures in an attempt to control the bird hazards on the airfield. Unfortunately, when it came to controlling these birds on or near our runways and aircraft movement areas we were more reactive than proactive. We would do airfield checks several times an hour to detect and deter any birds in these areas. The deterrents used included vehicle/human presence, pyrotechnics, and the periodic use of a trained border collie. At the time, we felt like we were doing all we could to reduce the threat to aircraft and human life. It was not until a near fatal accident in October 1998, when we truly realized how dangerous our operating environment really was to aircraft at or near the airfield. It was at this time, we had a C-12 (twin-engine passenger plane) land on our primary runway at night. The tower cleared the aircraft to land, and upon touchdown to the runway the aircraft collided with a flock of geese. Neither the tower nor the crew of the aircraft saw the geese because they were obscured in the darkness. The end result was 12 dead geese and $374,000 damage to the C-12. Fortunately, there were no human fatalities, but it was painfully clear we needed to improve our method of clearing the runway at night and during low visibility conditions. It was through this realization that we ventured to the U.S. Army Communications and Electronics Command for ideas on ways to deal with our threat. It was through a sub-organization within this command, Night Vision Labs, that we realized the possibilities of modifying thermal imagery and infrared technology to detecting wildlife on airports.
Resumo:
In dealing with population estimates, we need to determine first the reason for estimating the population. If we are dealing with a local situation, are we concerned with a local estimate? If we are dealing with a regional problem, are we concerned with a regional estimate? The blackbird problem is chiefly a regional problem, but we need to look at broader horizons than just local or regional situations. Are we dealing with a national problem? Is this problem a year-round one or is it a seasonal problem? We may want to know just purely the number of birds we are dealing with. Another reason for doing population estimates might be to determine the effectiveness of some lethal control method that has been employed. Fortunately, those species with which we are most concerned are those not on the endangered species list at the present time. Many Ohio farmers would like to see the Red-winged Blackbird on the endangered species list, I think, but it is not there. My particular interest in population estimates is to determine if we can develop an early warning system for the agriculturists, so that they can better anticipate the time they can expect damage from birds. A lot of methods have been tried in the past.
Resumo:
It has been known for centuries that light (photoperiod) is possibly the major environmental stimuli affecting bird behavior and physiology. The length of the light period stimulates the breeding cycle, migration, fat deposition, and molt in most species of birds. Therefore, it is only natural that one would think of using light as a means of bird control. In fact, light has already been used as a bird control; flood-light traps have been used to trap blackbirds (Meanley 1971); Meanley states that 2000-W search lights have been used to alleviate depredation by ducks in rice fields. Pulsing light is already used on aircraft, aircraft hangers and high towers as a means of detourinq birds (Schaefer, 1968). With some positive results already obtained with light as a bird control, the next step is to see if a better light source (the laser) might not have a greater effect. The laser is basically an intense and coherent light with extreme directivity and, thus, might have greater influence on a bird’s behavioral and physiological responses.
Resumo:
Today I am going to give you a report on recent bird ingestion events into transport category turbofan engine in commercial service. We are still having these events. We may not ever completely eliminate all such events, but our purpose for meeting is to put all our resources to work to try. The events that I am going to report on today represent some of the more significant events over the last couple of years. The events are significant because of the potential for jeopardizing the safety of the aircraft involved and the aircraft occupants. The events I am going to discuss all involve encounters with large birds. Each situation reflects a bird control issue or event that resulted in a high workload for the flight crew because something out of the ordinary happened that they had to respond to. Some of the situations involve areas outside the US or Canada but serve as a lesson because that the same situation can happen here.
Resumo:
The Red-billed Quelea (Quelga quelaa), because of its widespread destruction of grain crops throughout its range in Africa, is one of the most studied and written about granivorous bird species. Less publicized are more local bird pests in Africa which may be equally Important. The Village Weaver, (Ploceus cucullatus), for example, is a pest in many countries, while some other Ploecids with limited destructive habits create local problems. Significant crop losses also occur where there are large populations of Golden Sparrows (Passer luteus), House Sparrows (Passer domesticus), Red Bishops (Euplectes oryx), Doves (Streptopelia spp.), Glossy Starlings (Lamprotornis chalybaeus), Parakeets (Psittacula spp.), and some waterfowl (Mackworth-Praed and Grant, 1952; Pans Manual No. 3, 1974; Park, 1974). Crop losses from local bird pests were reported in early February 1975 to the Sudan Plant Protection Bird Control Unit of the Ministry of Agriculture. A mechanized farm scheme in Khartoum North had large concentrations of Red Bishops roosting in maize and feeding on an early-maturing wheat variety (Mexicana). Small flocks of Golden Sparrows and House Sparrows also were present. Bird damage was clearly visible, especially at the corners and along the edges of the ripening wheatfields. Ground spraying with Queletox (60% a.1. Fenthion) on roosts of the Golden and House Sparrows was conducted along hedge rows of acacia (Acacia mellifera) located at the north end of the farm. Although the spray killed large numbers of roosting birds, damage con- tinued as the wheat matured. Pilot field trials were thus organized to test the effectiveness of other crop protection techniques. Because birds fed throughout many blocks of wheat which matured at different periods, it was felt that several different experiments could be conducted without Interfering with each other. The control techniques Included an acoustical repellent, a chemical repellent, a chemical frightening agent, and a trap. The experiments, conducted from February 7 through February 23, 1975, were not designed as an integrated control operation.
Resumo:
To many people, California is synonomous with Disneyland, freeways, Los Angeles smog, Yosemite, the California missions, or for you bird aficionados, the California Condor. But do you think about California when you eat strawberry shortcake? You should -- California leads the nation in strawberry production. How about artichokes? California produces over 98% of the artichokes raised in the United States. Dates? California produces over 99% of the dates in the United States. Yes, California is all of these, and it is much more. California may well be the most diverse state in the United States. Within its 100.2 million acres, California has the lowest place in the U.S. in Death Valley and one of the highest mountains with Mt. Whitney. Because California is such a diverse state and has a wide variety of micro- climates, it supports a uniquely diverse agriculture. Agriculture uses only about 36 million acres of its total 100.2 million acres, and most of the cash return from crops is produced on 8,6 million acres that are irrigated. California produces about 250 crops and livestock commodities (excluding nursery crops) and provides the U.S. with about 25% of its table foods. California leads the nation in the production of 46 commercial crops and livestock commodities; its farmers and ranchers marketed $8.6 billion of crop and livestock products in 1975, and the state’s harvested farm production in 1975 set a new record at 51.1 million tons. HISTORY OF BIRD PROBLEMS Records such as this are not achieved without some risk. Crops growing in Cali- fornia have always had competition from many types of vertebrate pests. The wide variety of crops grown in California and the varied climates and situations in which they are grown has resulted in many different species of birds damaging crops. Birds have compet- ed with man for his crops since the dawn of agriculture. McAtee (1932) cited examples of bird damage that occurred in a wide variety of crops in California during the early 1900s. During the 1920s, many requests for Information and relief from damage caused by a wide variety of birds, culminated in the assignment, in May 1929, of two biologists, S. E. Piper and Johnson Neff, of the former U.S. Bio- logical Survey, to initiate field studies in California. In cooperation with the Cali- fornia Department of Food and Agriculture and County Agricultural Commissioners, the study was to determine the problems and devise control procedures relative to bird depredations. Piper and Neff found such damage as Horned Larks pulling sprouting crops, House Finches disbudding deciduous fruit trees and devouring mature fruit. Blackbirds were a problem in the rice crop. Early controls were varied and, for the most part, lacked effectiveness. Flagging of fields was common to deter Horned Larks. Windmill devices were tried to frighten birds. Shooting to kill birds was common; scarecrows were.used. The six-year study brought forth the basis of most of the depredating bird control techniques still in use in California. At the end of the study, these two biologists compiled a book called “Procedure and Methods in Controlling Birds Injurious to Crops in California.” This was and still is the “Bible” for bird damage control techniques used in California. The thorough investigations conducted by these biologists resulted in techniques that have remained valid in California for over 40 years.
Resumo:
Bird damage to commercial fruits has long been a problem in many coun- tries, but the true magnitude of the damage incurred is difficult to determine objectively. Often the opinions of fruit growers provide the only measure of importance. In 1972, the U.S. Fish and Wildlife Service, the Michigan Department of Agriculture, and the Statistical Reporting Service of the U.S. Department of Agriculture obtained quantitative information on bird damage to tart cherries (Prunus mahalob) in Michigan. The results of the survey are presented in this paper.
Resumo:
A survey of catfish producers by the United States Department of Agriculture, Centers for Epidemiology and Animal Health (CEAH) in 1996 indicated that the two primary sources of catfish losses in commercial operations were disease (45%) and wildlife (37%) (CEAH 1997a). A variety of avian and mammalian predators are amracred to aquaculture facilities in the United States (Parkhurs: er al. 1992) because ponds and open raceways provide a constant and readily accessible food supply for these animals. However, the mere presence of these predators arcund aquaculture faciliries does not necessarily mean that significant depredation problems are occurring. At catfish farms, three species or species groups of birds are primarily cited by catfish producers as causing most depredation problems (Wywialowski 1999). These include doublecrested cormorants, wading birds (herons and egrets), and American white pelicans, in order of importance to catfish producers (Wywialowski 1993). Although all of these species consume catfish, their biology, distribution, dietary preferences dictare the extent of depredation problems they cause and the approaches needed to alleviate their depredations. With the exception of total bird exclusion from ponds, there are no simple solutions for resolving all bird depredation problems in catfish aquaculture. Thus, in most cases, an integrated management approach to alleviating bird depredations must be considered.
Resumo:
The purpose of this paper is to present a brief review of the research being conducted in England, France, Germany, and The Netherlands on problems caused by nuisance and depredating birds. Much of the information presented has been obtained through correspondence with collaborators. In the fall of 1962, I discussed depredating bird and bird-airport problems with research workers in these countries, and also attended the meeting of the International Union of Applied Ornithology held in Frankfurt/Main. In November 1963, I attended an international symposium about the bird-airport problem, held in Nice, France. This paper will draw attention to the current research which I think will interest American investigators, but will not report every aspect of the foreign investigations. Details appear in the publications that are listed.