53 resultados para Alaska-Bering-Chukchi_Sea
Resumo:
Between 1991 and 1993, Alaska harbor porpoise (Phocoena phocoena) abundance was investigated during aerial surveys throughout much of the coastal and offshore waters from Bristol Bay in the eastern Bering Sea to Dixon Entrance in Southeast Alaska. Line-transect methodology was used, and only those observations made during optimal conditions were analyzed. Survey data indicated densities of 4.48 groups/100 km2, or approximately 3,531 harbor porpoises (95% C.I. 2,206-5,651) in Bristol Bay and 0.54 groups/100 km2, or 136 harbor porpoises (95% C.I. 11-1,645) for Cook Inlet. Efforts off Kodiak Island resulted in densities of 1.85 groups/100 km2, or an abundance estimate of 740 (95% C.I. 259-2,115). Surveys off the south side of the Alaska Peninsula found densities of 2.03 groups/100 km2 and an abundance estimate of 551 (95% C.I. 423-719). Surveys of offshore waters from Prince William Sound to Dixon Entrance yielded densities of 4.02 groups/100 km’ and an abundance estimate of 3,982 (95% C.I. 2,567-6,177). Combining all years and areas yielded an uncorrected density estimate of 3.82 porpoises per 100 km2, resulting in an abundance estimate of 8,940 porpoises (CV = 13.8%) with a 95% confidence interval of 6,746-11,848. Using correction factors from other studies to adjust for animals missed by observers, the total number of Alaska harbor porpoises is probably three times this number.
Resumo:
The known summer feeding range of the North Pacific humpback whale (Megaptera novaeangliae) extends from California, along the coasts of Oregon, Washington, and Alaska, into the Bering Sea, along the Aleutian Islands, the Sea of Okhotsk (Tomilin 1957), and to northern Japan (Rice 1977). In feeding areas of the northeastern Pacific Ocean, humpback whale photoidentification research has been concentrated off California (Calambokidis et al. 1993), southeastern Alaska (Darling and McSweeney 1985, Baker et al. 1986, 1992; Perry et al. 1990), Prince William Sound in Alaska (von Ziegesar 1992), the Oregon and Washington coasts (Calambokidis et al. 1993), and British Columbia (Darling and McSweeney 1985; Graerne Ellis, unpublished data). Results of these photoidentification studies have documented that individual whales tend to return to the same general areas in subsequent years (Darling and McSweeney 1985, Baker et al. 1986, Calambokidis et a(. 1996, von Ziegesar et al. 1994).
Resumo:
North Pacific right whales (Eubalaena japonica) were extensively exploited in the 19th century, and their recovery was further retarded (severely so in the eastern population) by illegal Soviet catches in the 20th century, primarily in the 1960s. Monthly plots of right whale sightings and catches from both the 19th and 20th centuries are provided, using data summarized by Scarff (1991, from the whale charts of Matthew Fontaine Maury) and Brownell et al. (2001), respectively. Right whales had an extensive offshore distribution in the 19th century, and were common in areas (such as the Gulf of Alaska and Sea of Japan) where few or no right whales occur today. Seasonal movements of right whales are apparent in the data, although to some extent these reflect survey and whaling effort. That said, these seasonal movements indicate a general northward migration in spring from lower latitudes, and major concentrations above 40°N in summer. Sightings diminished and occurred further south in autumn, and few animals were recorded anywhere in winter. These north-south migratory movements support the hypothesis of two largely discrete populations of right whales in the eastern and western North Pacific. Overall, these analyses confirm that the size and range of the right whale population is now considerably diminished in the North Pacific relative to the situation during the peak period of whaling for this species in the 19th century. For management purposes, new surveys are urgently required to establish the present distribution of this species; existing data suggest that the Bering Sea, the Gulf of Alaska, the Okhotsk Sea, the Kuril Islands and the coast of Kamchatka are the areas with the greatest likelihood of finding right whales today.
Resumo:
The mammal fauna of arctic Alaska is comprised of about thirty species, most of which are widely distributed. A few of these are essentially nearctic species, having extended their range northwestward during post-Pleistocene time. The majority, however, consists of forms which are either circumboreal in their distribution, or which have closely-related palearctic counterparts-considered specifically distinct hy most North American mammalogists. Sorne of the foremost Old World workers, however, do not agree that Bering Strait constitutes a barrier which effectively separates the Old World fauna from the New.
Resumo:
Trichinosis in the arctic regions of the world has received considerable attention during recent years, particularly since the work of Roth (1948) in Greenland. In Connell's (1949) review of arctic trichinosis some Alaskan and Canadian records were included but, until now, little has been known of the status of the disease in Alaska. Information available at the present time indicates that the incidence of trichinosis is high in circumpolar carnivores and that marine mammals have a definite place in its epizootiology. Present knowledge cannot explain the survival of trichinosis in marine mammal populations, but it is evident that they may serve as important sources of human infection. Up to the present time the following mammals from Alaska have been found to be infected: From the arctic coast-polar bear, Thalarctas maritimus; arctic fox, Alapex lagapus irmuitus; red fox, Vulpes fulva alascemis; white whale, Delphinapterus leucas; Eskimo dog. From south of the Brooks Range--brown and grizzly bears, Ursus spp.; wolf, Canis lupus ssp.; wolverine. Gula l. luscus. At the time of writing, nearly ail species of land carnivores in Alaska have been examined as well as many other mammalian species less likely to be infected, including various rodents, shrews, and others.
Resumo:
Covers the physical attributes (physiography, climate and vegetation) of the Brooks Range, Alaska, as well as the Numamuit Eskimo people who lived there in the 1940s and before (including information about their livelihood, history, dwellings, clothing, food, transportation and hunting implements), and includes a list and description of the mammals that lived there (including shrews, grizzly bears, foxes, wolves, martens, ermines, weasels, minks, wolverines, otters, lynxes, hares, marmots, ground squirrels, red squirrels, lemmings, voles, beavers, porcupines, moose, caribou and sheep).
Resumo:
The abundance of harbor seals (Phoca vitulina richardii) has declined in recent decades at several Alaska locations. The causes of these declines are unknown, but there is concern about the status of the populations, especially in the Gulf of Alaska. To assess the status of harbor seals in the Gulf of Alaska, we conducted aerial surveys of seals on their haul-out sites in August-September 1996. Many factors influence the propensity of seals to haul out, including tides, weather, time of day, and time of year. Because these “covariates” cannot simultaneously be controlled through survey design, we used a regression model to adjust the counts to an estimate of the number of seals that would have been ashore during a hypothetical survey conducted under ideal conditions for hauling out. The regression, a generalized additive model, not only provided an adjustment for the covariates, but also confirmed the nature and shape of the covariate effects on haul-out behavior. The number of seals hauled out was greatest at the beginning of the surveys (mid-August). There was a broad daily peak from about 1100-1400 local solar time. The greatest numbers were hauled out at low tide on terrestrial sites. Tidal state made little difference in the numbers hauled out on glacial ice, where the area available to seals did not fluctuate with the tide. Adjusting the survey counts to the ideal state for each covariate produced an estimate of 30,035 seals, about 1.8 times the total of the unadjusted counts (16,355 seals). To the adjusted count, we applied a correction factor of 1.198 from a separate study of two haul-out sites elsewhere in Alaska, to produce a total abundance estimate of 35,981 (SE 1,833). This estimate accounts both for the effect of covariates on survey counts and for the proportion of seals that remained in the water even under ideal conditions for hauling out.
Resumo:
Killer whale (Orcinus orca Linnaeus, 1758) abundance in the North Pacific is known only for a few populations for which extensive longitudinal data are available, with little quantitative data from more remote regions. Line-transect ship surveys were conducted in July and August of 2001–2003 in coastal waters of the western Gulf of Alaska and the Aleutian Islands. Conventional and Multiple Covariate Distance Sampling methods were used to estimate the abundance of different killer whale ecotypes, which were distinguished based upon morphological and genetic data. Abundance was calculated separately for two data sets that differed in the method by which killer whale group size data were obtained. Initial group size (IGS) data corresponded to estimates of group size at the time of first sighting, and post-encounter group size (PEGS) corresponded to estimates made after closely approaching sighted groups.
Resumo:
Aim To assess the distribution, group size, seasonal occurrence and annual trends of cetaceans. Location The study area included all major inland waters of Southeast Alaska. Methods Between 1991 and 2007, cetacean surveys were conducted by observers who kept a constant watch when the vessel was underway and recorded all cetaceans encountered. For each species, we examined distributional patterns, group size, seasonal occurrence and annual trends. Analysis of variance (anova F) was used to test for differences in group sizes between multiple means, and Student’s t-test was used to detect differences between pairwise means. Cetacean seasonal occurrence and annual trends were investigated using a generalized linear model framework. Results Humpback whales (Megaptera novaeangliae) were seen throughout the region, with numbers lowest in spring and highest in the fall. Fin whale (Balaenoptera physalus) and minke whale (Balaenoptera acutorostrata) distributions were more restricted than that reported for humpback whales, and the low number of sightings precluded evaluating seasonal trends. Three killer whale (Orcinus orca) eco-types were documented with distributions occurring throughout inland waters. Seasonal patterns were not detected or could not be evaluated for resident and offshore killer whales, respectively; however, the transient eco-type was more abundant in the summer. Dall’s porpoise (Phocoenoides dalli) were distributed throughout the region, with more sightings in spring and summer than in fall. Harbour porpoise (Phocoena phocoena) distribution was clumped, with concentrations occurring in the Icy Strait/Glacier Bay and Wrangell areas and with no evidence of seasonality. Pacific white-sided dolphins (Lagenorhynchus obliquidens) were observed only occasionally, with more sightings in the spring. For most species, group size varied on both an annual and seasonal basis. Main conclusions Seven cetacean species occupy the inland waters of Southeast Alaska, with distribution, group size, seasonal occurrence and annual trends varying by species. Future studies that compare spatial and temporal patterns with other features (e.g. oceanography, prey resources) may help in identifying the key factors that support the high density and biodiversity of cetaceans found in this region. An increased understanding of the region’s marine ecology is an essential step towards ensuring the long-term conservation of cetaceans in Southeast Alaska.
Resumo:
Killer whale predation on belugas in Cook Inlet, Alaska, has become a concern since the decline of these belugas was documented during the 1990s. Accordingly, killer whale sightings were compiled from systematic surveys, observer databases, and anecdotal accounts. Killer whales have been relatively common in lower Cook Inlet (at least 100 sightings from 1975 to 2002), but in the upper Inlet, north of Kalgin Island, sightings were infrequent (18 in 27 yr), especially prior to the 1990s. Beach cast beluga carcasses with teeth marks and missing flesh also provided evidence of killer whale predation. Most observed killer whale/beluga interactions were in the upper Inlet. During 11 of 15 observed interactions, belugas were obviously injured or killed, either through direct attacks or indirectly as a result of stranding. Assuming at least one beluga mortality occurred during the other four encounters, we can account for 21 belugas killed between 1985 and 2002. This would suggest a minimum estimate of roughly l/yr and does not include at least three instances where beluga calves accompanied an adult that was attacked.
Resumo:
Little is known about the present-day occurrence of cetaceans found in offshore waters in the Gulf of Alaska; however, whaling records and a few recent surveys have shown this area to be important habitat. The U.S. Navy maintains a maritime training area in the central Gulf of Alaska, east of Kodiak Island, and has requested additional information on marine mammal presence and use of this area. To describe the occurrence and distribution of marine mammals in and around the U.S. Navy training area, a line transect visual and acoustic survey was conducted 10-20 April 2009 from the NOAA ship Oscar Dyson. The primary survey area encompassed nearshore and offshore pelagic waters of the central Gulf of Alaska. Survey lines were designed to provide equal coverage of the nearshore and offshore habitat.
Resumo:
In 1948 much interest in trichinosis in arctic regions was aroused, particularly by the findings of Thorborg et al. (1948), who investigated serious outbreaks occurring among the Eskimo of West Greenland during 1947. Consequently, with the founding of the Arctic Health Research Center in the autumn of 1948, a study of trichinosis in Alaska was the first project to be initiated by the Zoonotic Disease Section (formerly Animal-borne Disease Section) of this Center. Field work was begun in January, 1949, and a preliminary note on trichinosis in Alaskan mammals was published by Brandly and Rausch (1950). The subject of trichinosis in arctic regions was reviewed by Connell (1949). The survey to determine the prevalence of T. spiralis in mammals in Alaska was terminated in the spring of 1953; this paper reports the results of this work.
Resumo:
During the spring of 1951, the U. S. Fish and Wildlife Service undertook the removal of sea otter, Enhydra lutris (L)., from the Aleutian Island of Amchitka, for the purpose of restocking range from which the animals have long been exterminated. The decision to undertake this activity was influenced by the nature of military operations planned for the island later the same year. The capture and removal of the otter were under the supervision of Mr. Robert D. Jones, Biologist, U. S. Fish and Wildlife Service. Heavy losses among the animals shortly after capture made the venture unsuccessful. Many deaths were concurrent among animals in the wild state. The writer was asked to investigate the causes of disease in the sea otter, and it is the purpose of this paper to report the results of these investigation, with special reference to helminth parasites.
Resumo:
During the summer of 1953, Mr. Edward T. Roche, of the Department of Zoology, University of Southern California, continued observations on the life history of the ground squirrel, Citellus undulatus barrowensis (Merriam), along the Meade River south of Point Barrow, Alaska. In the course of this work, 55 ground squirrels were examined for intestinal parasites, and were found commonly to harbor cestodes. Mr. Roche kindly offered a number of these cestodes to the writer for study, and they represent an undescribed species of Paranoplocephala Liihe, 1910. In appreciation of the generous cooperation extended to the personnel of this laboratory by Dr. Ira L. Wiggins, formerly Scientific Director of the Arctic Research Laboratory, Office of Naval Research, at Point Barrow, the name Paranoplocephala wigginsi n. sp. is proposed for this cestode.
Resumo:
The importance to the biotic community of various species of lemmings in arctic and subarctic regions has long been recognized, but there is little known about the ecology of these mammals. of the two species that occur on the Arctic Slope of Alaska, namely, the collared lemming, Dicrostonyx groenlandicus rubricatus (Richardson), and the brown lemming, Lemmus trimucronatus alascensis Merriam, during the spring of 1949 the writer had the good fortune to observe a cyclic decline in the population of the brown lemming on the Arctic Coast of Alaska. Observations were made during the peak density preceding this decline and were continued for more than a year subsequent to it. It is the purpose of this paper to present the results of these studies.