3 resultados para tidal front

em Digital Commons @ DU | University of Denver Research


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional residential construction results in a variety of local, regional, and global environmental impacts. It also may lead to unhealthy interior environments for building inhabitants. Green building, on the contrary, is a practice that reduces the environmental impacts of residential development, that produces healthier indoor environments, and that yields better long-term financial investments. This Capstone Project applies empirical research and analysis to identify the history and benefits of green building, to support the hypothesis that Colorado Front Range communities benefit most from municipal green-build programs, and to make subsequent program recommendations. Ultimately, this project may assist communities with implementing their own municipal green-build programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The five installations operated by the Department of Defense (DoD) in the Front Range region of Colorado do not meet the DoD non-hazardous solid waste diversion goal of 40 percent, further impacting landfills and generating greenhouse gases. This applied capstone project identifies and evaluates best management practices of a Materials Recovery Facility (MRF), qualitatively and quantitatively, to increase solid waste diversion at a DoD MRF. An environmental benefits model quantified the externalities of increasing solid waste diversion at the installations. By implementing best management practices at a MRF, the DoD would divert an additional 1,400 tons of solid waste per year, resulting in the equivalent of 1,502,567 gallons of gasoline being saved, among many benefits presented in this capstone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Denver metropolitan area is facing rapid population growth that increases the stress on already limited resources. Research and advanced computer modeling show that trees, especially those in urban areas, have significant environmental benefits. These benefits include air quality improvements, energy savings, greenhouse gas reduction, and possible water conservation. This Capstone Project applies statistical methods to analyze a small data set of residential homes and their energy and water consumption, as a function of their individual landscape. Results indicate that tree shade can influence water conservation, and that irrigation methods can be an influential factor as well. The Capstone is a preliminary analysis for future study to be performed by the Institute for Environmental Solutions in 2007.