3 resultados para pharmaceuticals in wastewater
em Digital Commons @ DU | University of Denver Research
Resumo:
The ubiquitous occurrence of pharmaceuticals and personal care products (PPCPs) in aquatic environments has raised concerns about potential adverse effects on aquatic ecology and human health. Certain pharmaceuticals have recently become a major focus of research to better understand the routes and persistence of these compounds once they enter into aquatic system. In this research, two model compounds were selected to represent pharmaceuticals that have been identified by recent research as being persistent; specifically, these compounds were trimethoprim (TMP, a basic antibiotic) and gemfibrozil (GEM, an acidic lipid regulator). Treatment of synthetic wastewater that contained these drugs was accomplished using wet-air oxidation (WAO). Pre- and post-treatment drug concentrations were determined by reversed-phase liquid chromatography. The influences of different operational conditions on removal efficiency of the drugs by WAO were evaluated, namely reaction time, initial drug concentration, oxygen concentration, and the amount and composition of additional organic matter used during WAO. The optimum removal efficiencies were found to be 91.9 % for TMP and 95.5 % for GEM.
Resumo:
Phosphorus pollution is a major concern in Illinois. Excessive amounts of phosphorus can be detrimental to water bodies. To help control phosphorus, the Illinois Pollution Control Board has proposed phosphorus limits on wastewater treatment facility discharges. If enacted, these limits will have negative impacts on the Springbrook Water Reclamation Center in Naperville, Illinois. To minimize these impacts, Naperville can utilize various non-point controls recommended in this paper to decrease the amount of phosphorus entering into the DuPage River and the Springbrook Water Reclamation Center. While these controls will not reduce levels low enough to totally satisfy limits on phosphorus discharges, they will significantly reduce the treatment costs Naperville will need to expend to meet them and be more environmentally effective.
Resumo:
As the population of Colorado continues to grow, the impacts from individual sewage disposal systems, or onsite wastewater systems (OWS), are becoming more apparent. Increased use of OWS impacts not only water quality but land use and development as well. These impacts have led to the need for a new generation of wastewater regulations in the state, a transition from the historic prescriptive requirements to a more progressive, performance-based system. A performance-based system will allow smarter growth, improved water quality, and cost savings for both the regulatory agencies and the OWS industry in Colorado. This project outlines the challenges and essential elements required to make this transition, and provides guidance on how to meet the challenges and overcome barriers to implementing a performance code in Colorado.