4 resultados para finite impulse response (FIR) digital filters
em Digital Commons @ DU | University of Denver Research
Resumo:
Residuated lattices, although originally considered in the realm of algebra providing a general setting for studying ideals in ring theory, were later shown to form algebraic models for substructural logics. The latter are non-classical logics that include intuitionistic, relevance, many-valued, and linear logic, among others. Most of the important examples of substructural logics are obtained by adding structural rules to the basic logical calculus
Resumo:
Thermal buckling behavior of automotive clutch and brake discs is studied by making the use of finite element method. It is found that the temperature distribution along the radius and the thickness affects the critical buckling load considerably. The results indicate that a monotonic temperature profile leads to a coning mode with the highest temperature located at the inner radius. Whereas a temperature profile with the maximum temperature located in the middle leads to a dominant non-axisymmetric buckling mode, which results in a much higher buckling temperature. A periodic variation of temperature cannot lead to buckling. The temperature along the thickness can be simplified by the mean temperature method in the single material model. The thermal buckling analysis of friction discs with friction material layer, cone angle geometry and fixed teeth boundary conditions are also studied in detail. The angular geometry and the fixed teeth can improve the buckling temperature significantly. Young’s Modulus has no effect when single material is applied in the free or restricted conditions. Several equations are derived to validate the result. Young’s modulus ratio is a useful factor when the clutch has several material layers. The research findings from this paper are useful for automotive clutch and brake discs design against structural instability induced by thermal buckling.
Resumo:
Professor Robert J. Smith encourages readers, lawyers, and courts to forget Furman v. Georgia and to focus instead on death penalty challenges grounded in the diminished culpability of nearly all capital defendants. We applaud Professor Smith’s call to focus on the mental and emotional characteristics that reduce the blameworthiness of so many of those charged with capital crimes; recognizing diminished culpability as the rule rather than the exception among capital defendants conveys a reality that rarely finds its way into reported cases. We are troubled, however, by Professor Smith’s call to “forget Furman.” We believe the title and the article’s efforts to undermine Furman-based challenges disserve Professor Smith’s principal goal — addressing the United States’ broken death penalty system.
Resumo:
Understanding spatial distributions and how environmental conditions influence catch-per-unit-effort (CPUE) is important for increased fishing efficiency and sustainable fisheries management. This study investigated the relationship between CPUE, spatial factors, temperature, and depth using generalized additive models. Combinations of factors, and not one single factor, were frequently included in the best model. Parameters which best described CPUE varied by geographic region. The amount of variance, or deviance, explained by the best models ranged from a low of 29% (halibut, Charlotte region) to a high of 94% (sablefish, Charlotte region). Depth, latitude, and longitude influenced most species in several regions. On the broad geographic scale, depth was associated with CPUE for every species, except dogfish. Latitude and longitude influenced most species, except halibut (Areas 4 A/D), sablefish, and cod. Temperature was important for describing distributions of halibut in Alaska, arrowtooth flounder in British Columbia, dogfish, Alaska skate, and Aleutian skate. The species-habitat relationships revealed in this study can be used to create improved fishing and management strategies.