2 resultados para back electron transfer

em Digital Commons @ DU | University of Denver Research


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mitochondrial matrix flavoproteins electron transfer flavoprotein (ETF) and electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) are responsible for linking fatty acid β-oxidation with the main mitochondrial respiratory chain. Electrons derived from flavoprotein dehydrogenases are transferred sequentially through ETF and ETF-QO to ubiquinone and then into the respiratory chain via complex III. In this study, the effects of changes in ETF-QO redox potentials on its activity and the conformational flexibility of ETF were investigated. ETF-QO contains one [4Fe-4S]2+,1+ and one flavin adenine dinucleotide (FAD). In the porcine protein, threonine 367 is hydrogen bonded to N1 and O2 of the flavin ring of the FAD. The analogous site in Rhodobacter sphaeroides ETF-QO is asparagine 338. Mutations N338T and N338A were introduced into the R. sphaeroides protein by site-directed mutagenesis to determine the impact of hydrogen bonding at this site on redox potentials and activity. FAD redox potentials were measured by potentiometric titration probed by electron paramagnetic resonance (EPR) spectroscopy. The N338T and N338A mutations lowered the midpoint potentials, which resulted in a decrease in the quinone reductase activity and negligible impact on disproportionation of ETF1e- catalyzed by ETF-QO. These observations indicate that the FAD is involved in electron transfer to ubiquinone, but not in electron transfer from ETF to ETF-QO. Therefore it is proposed that the iron-sulfur cluster is the immediate acceptor from ETF. It has been proposed that the αII domain of ETF is mobile, allowing promiscuous interactions with structurally different partners. Double electron-electron resonance (DEER) was used to measure the distance between spin labels at various sites and an enzymatically reduced FAD cofactor in Paracoccus denitrificans ETF. Two or three interspin distance distributions were observed for spin-labels in the αI (A43C) and βIII (A111C) domains, but only one is observed for a label in the βII (A210C) domain. This suggests that the αII domain adopts several stable conformations which may correspond to a closed/inactive conformation and an open/active conformation. An additional mutation, E162A, was introduced to increase the mobility of the αII domain. The E162A mutation doubled the activity compared to wild-type and caused the distance distributions to become wider. The DEER method has the potential to characterize conformational changes in ETF that occur when it interacts with various redox partners.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main goal of this project was to develop an efficient methodology allowing rapid access to structurally diverse scaffolds decorated with various functional groups. Initially, we discovered and subsequently developed an experimentally straightforward, high-yielding photoinduced conversion of readily accessible diverse starting materials into polycyclic aldehydes and their (hemi)acetals decorated by various pendants. The two step sequence, involving the Diels-Alder addition of heterocyclic chalcones and other benzoyl ethylenes to a variety of dienes, followed by the Paternò-Büchi reaction, was described as an alkene-carbonyl oxametathesis. This methodology offers a rapid increase in molecular complexity and diversity of the target scaffolds. To develop this novel methodology further and explore its generality, we directed our attention to the Diels-Alder adducts based on various chromones. We discovered that the Diels-Alder adducts of chromones are capable of photoinduced alkene-arene [2+2] cycloaddition producing different dienes, which can either dimerize or be introduced into a double-tandem [4π+2π]·[2π+2π]·[4π+2π]·[2π+2π] synthetic sequence, followed by an acid-catalyzed oxametathesis, leading to a rapid expansion of molecular complexity over a few experimentally simple steps. In view of the fact that oxametathesis previously was primarily observed in aromatic oxetanes, we decided to prepare model aliphatic oxetanes with a conformationally unconstrained or "flexible" methyl group based on the Diels-Alder adducts of cyclohexadiene or cyclopentadiene with methyl vinyl ketone. Upon addition of an acid, the expected oxametathesis occurred with results similar to those observed in the aromatic series proving the generality of this approach. Also we synthesized polycyclic oxetanes resulting from the Diels-Alder adducts of cyclic ketones. This not only gave us access to remarkably strained oxetane systems, but also the mechanism for their protolytic ring opening provided a great deal of insight to how the strain affects the reactivity. Additionally, we discovered that although the model Hetero-Diels-Alder adducts did not undergo [2+2] cycloaddition, both exo- and endo-Sulfa-Diels-Alder products, nonetheless, were photochemically active and various products with defined stereochemistry could be produced upon photolysis. In conclusion, we have developed an approach to the encoding and screening of solution phase libraries based on the photorelease of externally sensitized photolabile tags. The encoding tags can be released into solution only when a binding event occurs between the ligand and the receptor, equipped with an electron transfer sensitizer. The released tags are analyzed in solution revealing the identity of the lead ligand or narrowing the range of potential leads.